Answer
Verified
110.7k+ views
Hint: In order to solve this question you have to know the formula for the angular magnification for both the normal adjustment and when the final image is at least distance of distinct vision from the eyepiece. Also, remember all the concepts related to an astronomical telescope.
Formula used:
$m' = - \dfrac{{{f_o}}}{{{f_e}}}\left( {1 + \dfrac{{{f_e}}}{D}} \right)$
here ${f_e}$ is the focal length of the eyepiece of the given astronomical telescope
\[{f_o}\] is the focal length of the given astronomical telescope
$D$ is the least distance of distinct vision of the human eye
Complete step by step solution:
All the information given in the question are:
An astronomical telescope has an eyepiece of focal length, ${f_e} = 5cm$
Angular magnification in normal adjustments, $m = 10cm$
Final image is at least distance of distinct vision, $D = 25cm$
Firstly apply the formula for magnification for normal adjustment that is,
$m = - \dfrac{{{f_o}}}{{{f_e}}}$
On putting all the given values,
$10 = \dfrac{{{f_o}}}{5}$
On further solving, we have
$ \Rightarrow {f_o} = 50cm$
Now, when final image is at least distance of distinct vision from eyepiece, then angular magnification $m'$ is given by
$m' = - \dfrac{{{f_o}}}{{{f_e}}}\left( {1 + \dfrac{{{f_e}}}{D}} \right)$
Here ${f_e}$ is the focal length of the eyepiece of the given astronomical telescope
\[{f_o}\] is the focal length of the given astronomical telescope
$D$ is the least distance of distinct vision of the human eye
$ \Rightarrow m' = 10\left( {1 + \dfrac{5}{{25}}} \right)$
On further solving, we get the angular magnification as
$ \Rightarrow m' = 12$
Therefore, the correct option is (B).
Note: A astronomical telescope is an optical instrument used for observing far away distance. It has an object with an eyepiece with a short focal length and a large focal length to observe distant objects or celestial bodies. The ability of a telescope to magnify a distant object is known as its magnifying power. Mathematically, it is equal to the ratio of the focal length of the objective to the focal length of the eyepiece.
Formula used:
$m' = - \dfrac{{{f_o}}}{{{f_e}}}\left( {1 + \dfrac{{{f_e}}}{D}} \right)$
here ${f_e}$ is the focal length of the eyepiece of the given astronomical telescope
\[{f_o}\] is the focal length of the given astronomical telescope
$D$ is the least distance of distinct vision of the human eye
Complete step by step solution:
All the information given in the question are:
An astronomical telescope has an eyepiece of focal length, ${f_e} = 5cm$
Angular magnification in normal adjustments, $m = 10cm$
Final image is at least distance of distinct vision, $D = 25cm$
Firstly apply the formula for magnification for normal adjustment that is,
$m = - \dfrac{{{f_o}}}{{{f_e}}}$
On putting all the given values,
$10 = \dfrac{{{f_o}}}{5}$
On further solving, we have
$ \Rightarrow {f_o} = 50cm$
Now, when final image is at least distance of distinct vision from eyepiece, then angular magnification $m'$ is given by
$m' = - \dfrac{{{f_o}}}{{{f_e}}}\left( {1 + \dfrac{{{f_e}}}{D}} \right)$
Here ${f_e}$ is the focal length of the eyepiece of the given astronomical telescope
\[{f_o}\] is the focal length of the given astronomical telescope
$D$ is the least distance of distinct vision of the human eye
$ \Rightarrow m' = 10\left( {1 + \dfrac{5}{{25}}} \right)$
On further solving, we get the angular magnification as
$ \Rightarrow m' = 12$
Therefore, the correct option is (B).
Note: A astronomical telescope is an optical instrument used for observing far away distance. It has an object with an eyepiece with a short focal length and a large focal length to observe distant objects or celestial bodies. The ability of a telescope to magnify a distant object is known as its magnifying power. Mathematically, it is equal to the ratio of the focal length of the objective to the focal length of the eyepiece.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main