Answer
Verified
100.2k+ views
Hint: The velocity can be derived from the newton equation by the method of integration. Velocity is the rate of change of displacement. First, find the velocity along the x-axis than along the y axis. Then equate the two equations. Then obtain one of the above equations using the above equations.
Complete answer:
To describe the apposition of a body, its velocity, or acceleration relative to the frame of reference we use the kinematic equation. Velocity is the rate of change of displacement. From the newton equation, velocity is derived by the method of integration.
Integration of velocity results in the acceleration equation. If the motion starts from rest and the frame of reference should be the same, the initial velocity will be zero. If the motion starts from rest and the frame of reference should be the same.
It is a scalar quantity. If the uniform motion is attained by a body along a straight line when that body is moving with uniform velocity.
Displacement Cannot or can be equal to the path length traveled of an object. Distance to unit time is called speed. Equation integration results in the distance equation.
From the above statement, we can say that speed is scalar quantity and velocity is a vector. The velocity of an object changes since velocity is a vector quantity.
So statements (II) and (IV) are the right statements.
Hence option $\left( C \right)$ is the correct option.
Note: The motion starts from rest and the frame of reference should be the same. If the initial velocity is zero. The integration of the velocity equation results in the acceleration equation. Distance to unit time is called speed. Displacement cannot or can be equal to the path length traveled of an object.
Complete answer:
To describe the apposition of a body, its velocity, or acceleration relative to the frame of reference we use the kinematic equation. Velocity is the rate of change of displacement. From the newton equation, velocity is derived by the method of integration.
Integration of velocity results in the acceleration equation. If the motion starts from rest and the frame of reference should be the same, the initial velocity will be zero. If the motion starts from rest and the frame of reference should be the same.
It is a scalar quantity. If the uniform motion is attained by a body along a straight line when that body is moving with uniform velocity.
Displacement Cannot or can be equal to the path length traveled of an object. Distance to unit time is called speed. Equation integration results in the distance equation.
From the above statement, we can say that speed is scalar quantity and velocity is a vector. The velocity of an object changes since velocity is a vector quantity.
So statements (II) and (IV) are the right statements.
Hence option $\left( C \right)$ is the correct option.
Note: The motion starts from rest and the frame of reference should be the same. If the initial velocity is zero. The integration of the velocity equation results in the acceleration equation. Distance to unit time is called speed. Displacement cannot or can be equal to the path length traveled of an object.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main