Answer
Verified
409.2k+ views
Hint: Zero errors are errors that occur when the primary marking on the instruments like micrometre screw gauge, Vernier calliper et cetera do not coincide with the zero marking of the instrument. These errors can cause serious issues in the accuracy of the measurement and readings. Thus, they need to be corrected by taking the appropriate steps. We first begin by calculating the zero error in the instrument and then adding or subtracting it from the calculated value to get the accurate measurement.
Complete step by step solution:
We shall see zero error with respect to the Vernier calliper to understand the correction properly.
1. Vernier Calliper:
A Vernier calliper is an instrument used for making very accurate linear measurements. It utilises two graduated auxiliary scales to provide the measurement: a main scale similar to a regular ruler and an even further graduated scale, the Vernier that slides parallel to the main scale.
When there is no zero error, the main scale zero coincides with Vernier scale zero when there is no space between the blades. There can be two kinds of error if it doesn’t coincide: positive or negative.
i. Positive error: occurs when the jaws are touching each other and the zero of the Vernier lies on the right of the zero of the main scale.
To fix such an error, you subtract the zero error from the measured length to get the actual length as the measured length is greater than the actual length.
For example, if the zero error is a positive and the calculated length then,
Actual length $ = 1.5 - 0.3mm = 1.2mm$
ii. Negative error: similarly, when the jaws are touching each other and the zero of the Vernier calliper lies on the left of the zero of the main scale, a negative error is said to occur.
In such cases, the magnitude of the error is added to the calculated value to get the actual length as the actual length is greater than the calculated length.
For example, if the zero error is a positive and the calculated length then,
Actual length $ = 1.5 + 0.3mm = 1.8mm$
So depending on the kind of error, you either subtract or add the magnitude of the error to the calculated value. This can be done for other instruments too.
Note: Always make sure that the jaws of the instruments are completely shut before measuring the zero error. Different instruments have different ways to find the zero error, but the concept behind correction of the zero error is the same.
Complete step by step solution:
We shall see zero error with respect to the Vernier calliper to understand the correction properly.
1. Vernier Calliper:
A Vernier calliper is an instrument used for making very accurate linear measurements. It utilises two graduated auxiliary scales to provide the measurement: a main scale similar to a regular ruler and an even further graduated scale, the Vernier that slides parallel to the main scale.
When there is no zero error, the main scale zero coincides with Vernier scale zero when there is no space between the blades. There can be two kinds of error if it doesn’t coincide: positive or negative.
i. Positive error: occurs when the jaws are touching each other and the zero of the Vernier lies on the right of the zero of the main scale.
To fix such an error, you subtract the zero error from the measured length to get the actual length as the measured length is greater than the actual length.
For example, if the zero error is a positive and the calculated length then,
Actual length $ = 1.5 - 0.3mm = 1.2mm$
ii. Negative error: similarly, when the jaws are touching each other and the zero of the Vernier calliper lies on the left of the zero of the main scale, a negative error is said to occur.
In such cases, the magnitude of the error is added to the calculated value to get the actual length as the actual length is greater than the calculated length.
For example, if the zero error is a positive and the calculated length then,
Actual length $ = 1.5 + 0.3mm = 1.8mm$
So depending on the kind of error, you either subtract or add the magnitude of the error to the calculated value. This can be done for other instruments too.
Note: Always make sure that the jaws of the instruments are completely shut before measuring the zero error. Different instruments have different ways to find the zero error, but the concept behind correction of the zero error is the same.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line