
As a result of isobaric heating $\Delta T = 72K$, one mole of a certain ideal gas obtains an amount of heat $Q = 1.60kJ$. If the value of $\gamma$ is $\dfrac{{(10 + x)}}{{10}}$. Find $x$.
Answer
232.8k+ views
Hint: Given that the process is isobaric, so this means that the pressure is constant. If a gas expands at a constant pressure, then this process is known as isothermal expansion. In an isobaric process work done is proportional to volume and it is reversible.
Complete step by step solution:
Step I: In an isobaric process, the work done is given by
$W = \int {P.dV} $
$W = P\int {\Delta V} $
Step II:
But according to ideal gas law,
$P\Delta V = nR\Delta T$
$W = nR\Delta T$---(ii)
$R$ is gas constant and its value is $8.314$
For one mole of ideal gas, $n = 1$
Substitute the given values in equation (ii),
$W = 1 \times 8.314 \times 72$
$W = 598.60J$
Or $W \approx 600J = 0.6kJ$
Step III: Now according to the First Law of thermodynamics, the energy can neither be created nor destroyed. It can be converted from one form to another. For first law of thermodynamics,
$\Delta U = Q - W$
Where $\Delta U$ is the change in internal energy of the system
$Q$ is the energy or heat supplied
$W$ is the amount of work done
Step IV: Substitute the given values and find the value of internal energy of the system
$\Delta U = 1.6 - 0.6$
$\Delta U = 1kJ$
Step V: In case of isobaric processes, the internal energy of the system is given by
$\Delta U = n{c_v}\Delta T$---(i)
Where ${c_v}$ is the heat capacity of the substance
$\Delta T$ is the change in temperature
And the amount of heat of the system is given by
$Q = n{c_p}\Delta T$---(ii)
Step VI:
Dividing equation (i) and (ii),
$\dfrac{Q}{{\Delta U}} = \dfrac{{n{c_p}\Delta T}}{{n{c_v}\Delta T}}$
$\dfrac{Q}{{\Delta U}} = \dfrac{{{c_p}}}{{{c_v}}}$----(iii)
Step VII: Specific heat ratio in the isobaric process is given by gamma $\gamma $. Its formula is
$\gamma = \dfrac{{{c_p}}}{{{c_v}}}$---(iv)
Comparing (iii) and (iv)
$\gamma = \dfrac{Q}{{\Delta U}}$
$\gamma = \dfrac{{1.6}}{1}$
$\gamma = 1.6$
So the value of x is $\gamma = 1.6.$
Note: It is important to note that in an isobaric process, the volume of the system is allowed to expand or contract. It is to be done in such a way that it neutralises any pressure change. In an isobaric process, work is done and due to transfer of heat, there is change in internal energy.
Complete step by step solution:
Step I: In an isobaric process, the work done is given by
$W = \int {P.dV} $
$W = P\int {\Delta V} $
Step II:
But according to ideal gas law,
$P\Delta V = nR\Delta T$
$W = nR\Delta T$---(ii)
$R$ is gas constant and its value is $8.314$
For one mole of ideal gas, $n = 1$
Substitute the given values in equation (ii),
$W = 1 \times 8.314 \times 72$
$W = 598.60J$
Or $W \approx 600J = 0.6kJ$
Step III: Now according to the First Law of thermodynamics, the energy can neither be created nor destroyed. It can be converted from one form to another. For first law of thermodynamics,
$\Delta U = Q - W$
Where $\Delta U$ is the change in internal energy of the system
$Q$ is the energy or heat supplied
$W$ is the amount of work done
Step IV: Substitute the given values and find the value of internal energy of the system
$\Delta U = 1.6 - 0.6$
$\Delta U = 1kJ$
Step V: In case of isobaric processes, the internal energy of the system is given by
$\Delta U = n{c_v}\Delta T$---(i)
Where ${c_v}$ is the heat capacity of the substance
$\Delta T$ is the change in temperature
And the amount of heat of the system is given by
$Q = n{c_p}\Delta T$---(ii)
Step VI:
Dividing equation (i) and (ii),
$\dfrac{Q}{{\Delta U}} = \dfrac{{n{c_p}\Delta T}}{{n{c_v}\Delta T}}$
$\dfrac{Q}{{\Delta U}} = \dfrac{{{c_p}}}{{{c_v}}}$----(iii)
Step VII: Specific heat ratio in the isobaric process is given by gamma $\gamma $. Its formula is
$\gamma = \dfrac{{{c_p}}}{{{c_v}}}$---(iv)
Comparing (iii) and (iv)
$\gamma = \dfrac{Q}{{\Delta U}}$
$\gamma = \dfrac{{1.6}}{1}$
$\gamma = 1.6$
So the value of x is $\gamma = 1.6.$
Note: It is important to note that in an isobaric process, the volume of the system is allowed to expand or contract. It is to be done in such a way that it neutralises any pressure change. In an isobaric process, work is done and due to transfer of heat, there is change in internal energy.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

