Answer
Verified
109.2k+ views
Hint We are given with a situation wherein a rod is sliding frictionless and are given with the spring constant and the relaxed or equilibrium position of the top and are asked to solve two problems. Thus, we will use the concept of conservation of energy for all the points. Thus, we will equate the formula for total energy for an oscillating body.
Formulae Used:
$E = T + U$
Where,$E$ is the total energy of the body,$T$ is the kinetic energy of the body and$U$ is the potential energy of the body.
$T = \dfrac{1}{2}m{v^2}$
Where,$m$ is the mass of the body and$v$ is the velocity of the body.
$U = \dfrac{1}{2}k{x^2}$
Where,$k$ is the spring constant of the spring and$x$ is the displacement of the body from its equilibrium position.
Complete Step By Step Answer
Here,
For point$B$,
${E_A} = {E_B}$
Further applying the formula, we get
${T_A} + {U_A} = {T_B} + {U_B}$
Now,
Applying the equations for the respective energy, we get
$\dfrac{1}{2}{m_A}{v_A}^2 + \dfrac{1}{2}k{x_A}^2 = \dfrac{1}{2}{m_B}{v_B}^2 + \dfrac{1}{2}k{x_B}^2$
Now,
As the point $A$ is the rest position, we have
${v_A} = 0$
${x_A} = OA - x$
${x_B} = BO - x$
Now,
$OA = \sqrt {{{(BO)}^2} + {{(AB)}^2}} $
Given,
$m = 10kg$
$x = 10cm$
$BO = 30cm$
And,
$AB = 40cm$
Thus,
Putting in the values, we get
$OA = \sqrt {{{\left( {30} \right)}^2} + {{\left( {40} \right)}^2}} $
Further, we get
$OA = \sqrt {900 + 1600} $
Then, we get
$OA = 50cm$
Now,
Substituting these values, we get
$\left( {500} \right){\left( {0.5 - 0.1} \right)^2} = \left( {10} \right){\left( {{v_B}} \right)^2} + \left( {500} \right){\left( {0.3 - 0.1} \right)^2}$
Further, we get
$80 = 10{\left( {{v_B}} \right)^2} + 20$
Then, we get
$60 = 10{\left( {{v_B}} \right)^2}$
After that, we get
${v_B}^2 = 6$
Then, we get
${v_B} = 2.45m{s^{ - 1}}$
Similarly,
For$C$,
${x_c} = OC - x$
Then,
$OC = \sqrt {{{\left( {20} \right)}^2} + {{\left( {30} \right)}^2}} $
Further, we get
$OC \approx 36cm$
Then,
$\left( {500} \right){\left( {0.5 - 0.1} \right)^2} = (10){({v_C})^2} + \left( {500} \right){\left( {0.36 - 0.1} \right)^2}$
Further, we get
$80 = 10{\left( {{v_C}} \right)^2} + 33.8$
Then, we get
$46.2 = 10{\left( {{v_C}} \right)^2}$
Then,
${v_C}^2 = 4.62$
Further, we get
${v_C} = 2.15m{s^{ - 1}}$
Hence, the answers are:
1. $2.45m{s^{ - 1}}$
2. $2.15m{s^{ - 1}}$
Note We have got the answers by applying the formulation of the energy conservation theorem. This is because, during the whole motion of the body, the only parameter which stays conserved is the energy of the body.
Formulae Used:
$E = T + U$
Where,$E$ is the total energy of the body,$T$ is the kinetic energy of the body and$U$ is the potential energy of the body.
$T = \dfrac{1}{2}m{v^2}$
Where,$m$ is the mass of the body and$v$ is the velocity of the body.
$U = \dfrac{1}{2}k{x^2}$
Where,$k$ is the spring constant of the spring and$x$ is the displacement of the body from its equilibrium position.
Complete Step By Step Answer
Here,
For point$B$,
${E_A} = {E_B}$
Further applying the formula, we get
${T_A} + {U_A} = {T_B} + {U_B}$
Now,
Applying the equations for the respective energy, we get
$\dfrac{1}{2}{m_A}{v_A}^2 + \dfrac{1}{2}k{x_A}^2 = \dfrac{1}{2}{m_B}{v_B}^2 + \dfrac{1}{2}k{x_B}^2$
Now,
As the point $A$ is the rest position, we have
${v_A} = 0$
${x_A} = OA - x$
${x_B} = BO - x$
Now,
$OA = \sqrt {{{(BO)}^2} + {{(AB)}^2}} $
Given,
$m = 10kg$
$x = 10cm$
$BO = 30cm$
And,
$AB = 40cm$
Thus,
Putting in the values, we get
$OA = \sqrt {{{\left( {30} \right)}^2} + {{\left( {40} \right)}^2}} $
Further, we get
$OA = \sqrt {900 + 1600} $
Then, we get
$OA = 50cm$
Now,
Substituting these values, we get
$\left( {500} \right){\left( {0.5 - 0.1} \right)^2} = \left( {10} \right){\left( {{v_B}} \right)^2} + \left( {500} \right){\left( {0.3 - 0.1} \right)^2}$
Further, we get
$80 = 10{\left( {{v_B}} \right)^2} + 20$
Then, we get
$60 = 10{\left( {{v_B}} \right)^2}$
After that, we get
${v_B}^2 = 6$
Then, we get
${v_B} = 2.45m{s^{ - 1}}$
Similarly,
For$C$,
${x_c} = OC - x$
Then,
$OC = \sqrt {{{\left( {20} \right)}^2} + {{\left( {30} \right)}^2}} $
Further, we get
$OC \approx 36cm$
Then,
$\left( {500} \right){\left( {0.5 - 0.1} \right)^2} = (10){({v_C})^2} + \left( {500} \right){\left( {0.36 - 0.1} \right)^2}$
Further, we get
$80 = 10{\left( {{v_C}} \right)^2} + 33.8$
Then, we get
$46.2 = 10{\left( {{v_C}} \right)^2}$
Then,
${v_C}^2 = 4.62$
Further, we get
${v_C} = 2.15m{s^{ - 1}}$
Hence, the answers are:
1. $2.45m{s^{ - 1}}$
2. $2.15m{s^{ - 1}}$
Note We have got the answers by applying the formulation of the energy conservation theorem. This is because, during the whole motion of the body, the only parameter which stays conserved is the energy of the body.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main