At ${{10^\circ C}}$, the value of the density of a fixed mass of an ideal gas divided by its pressure is ’${{X}}$’. At ${{110^\circ C}}$ this ratio is:
A) $\dfrac{{10}}{{110}}$
B) $\dfrac{{383}}{{283}}$
C) $\dfrac{{110}}{{10}}$
D) $\dfrac{{283}}{{383}}$
Answer
Verified
123k+ views
Hint: In this question, first we need to understand the molar form of the ideal gas equation. Then derive the expression of ratio of density and pressure. Then solve it using the inverse proportionality of these terms.
Complete step by step solution:
As we know that the molar form of ideal gas equation is $PV = nRT$, where $P$ is the pressure of the gas, $V$ is the volume of the gas, $R$ is the universal gas constant, $T$ is the absolute temperature, and $n$ is the number of moles of the gas, which can be written as $n = \dfrac{m}{M}$ denoted as ratio of the total mass of the gas $m$ and the molar mass of the gas $M$.
As we know that the ideal gas equation can also be written as,
\[\rho = \dfrac{{PM}}{{RT}}\]
Here, the density of the gas is $\rho $.
Now, we Assume the ratio of density and the pressure of the gas be \[h\],
As we know the ideal gas equation as $\dfrac{\rho }{P} = \dfrac{M}{{RT}}$, the ratio can be expressed as $h = \dfrac{\rho }{P}$ or $h = \dfrac{M}{{RT}}$ so the ratio $h$ is inversely proportional to the absolute temperature $T$, that is, $h\alpha \dfrac{1}{T}$
Considering two ratios ${h_1}\;{\text{and}}\;{h_2}$ and two temperatures ${T_1}\;{\text{and}}\;{T_2}$, we get
\[\dfrac{{{h_2}}}{{{h_1}}} = \dfrac{{{T_1}}}{{{T_2}}}\]
Putting the given values in the above equation we get
$\dfrac{{{h_2}}}{{{h_1}}} = \dfrac{{\left( {273 + 10} \right)\;{\text{K}}}}{{\left( {273 + 110} \right)\;{\text{K}}}}$,
After simplification we get,
$ \Rightarrow \dfrac{{{h_2}}}{{{h_1}}} = \dfrac{{283}}{{383}}$
Hence option (D) is correct.
Note:It is obvious that physical properties of the gases depend strongly on the conditions. We need a set of standard conditions so that the properties of gases can be properly compared to each other. While putting the value of temperature we must put the temperature in the Kelvin scale not in any other scale.
Complete step by step solution:
As we know that the molar form of ideal gas equation is $PV = nRT$, where $P$ is the pressure of the gas, $V$ is the volume of the gas, $R$ is the universal gas constant, $T$ is the absolute temperature, and $n$ is the number of moles of the gas, which can be written as $n = \dfrac{m}{M}$ denoted as ratio of the total mass of the gas $m$ and the molar mass of the gas $M$.
As we know that the ideal gas equation can also be written as,
\[\rho = \dfrac{{PM}}{{RT}}\]
Here, the density of the gas is $\rho $.
Now, we Assume the ratio of density and the pressure of the gas be \[h\],
As we know the ideal gas equation as $\dfrac{\rho }{P} = \dfrac{M}{{RT}}$, the ratio can be expressed as $h = \dfrac{\rho }{P}$ or $h = \dfrac{M}{{RT}}$ so the ratio $h$ is inversely proportional to the absolute temperature $T$, that is, $h\alpha \dfrac{1}{T}$
Considering two ratios ${h_1}\;{\text{and}}\;{h_2}$ and two temperatures ${T_1}\;{\text{and}}\;{T_2}$, we get
\[\dfrac{{{h_2}}}{{{h_1}}} = \dfrac{{{T_1}}}{{{T_2}}}\]
Putting the given values in the above equation we get
$\dfrac{{{h_2}}}{{{h_1}}} = \dfrac{{\left( {273 + 10} \right)\;{\text{K}}}}{{\left( {273 + 110} \right)\;{\text{K}}}}$,
After simplification we get,
$ \Rightarrow \dfrac{{{h_2}}}{{{h_1}}} = \dfrac{{283}}{{383}}$
Hence option (D) is correct.
Note:It is obvious that physical properties of the gases depend strongly on the conditions. We need a set of standard conditions so that the properties of gases can be properly compared to each other. While putting the value of temperature we must put the temperature in the Kelvin scale not in any other scale.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line