
At \[90^\circ \], pure water has [\[{H_3}{O^ + }\]] = \[{\text{1}}{{\text{0}}^{ - 6}}\]m on the value of \[{K_w}\]at this temperature is :
A. \[{10^{ - 6}}\]
B \[{10^{ - 12}}\]
C. \[{10^{ - 13}}\]
D. \[{10^{ - 14}}\]
Answer
133.5k+ views
Hint: In case of pure water the amount of $[{H^ + }]$ and $[O{H^ - }]$ is the same. Water is a weak electrolyte and the amount of dissociation in pure water is very low. Due to this the amount of non-dissociated water molecules remains more or less constant. The product of $[{H^ + }]$ and $[O{H^ - }]$ is called an ionic product of water. This is denoted as \[{{\text{K}}_w}\].
Complete step by step solution:
Now Given,
Concentration of \[{{\text{H}}_{\text{3}}}{{\text{O}}^{\text{ + }}}{\text{ = 1}}{{\text{0}}^{{\text{ - 6}}}}{\text{mol/litre}}\]
The ionization reaction of water is,
\[{{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {{\text{H}}^{\text{ + }}}{\text{ + O}}{{\text{H}}^{\text{ - }}}\]
The expression for equilibrium constant is,
\[{\text{K = }}\dfrac{{\left[ {{{\text{H}}^{\text{ + }}}} \right]{\text{ }}\left[ {{\text{O}}{{\text{H}}^{\text{ - }}}} \right]}}{{\left[ {{{\text{H}}_{\text{2}}}{\text{O}}} \right]}}\]
After rearranging thisformula, we get,
\[{\text{K}} \times \left[ {{{\text{H}}_{\text{2}}}{\text{O}}} \right]{\text{ = }}\left[ {{{\text{H}}^{\text{ + }}}} \right]{\text{ }}\left[ {{\text{O}}{{\text{H}}^{\text{ - }}}} \right]\]
Due to the large amount of \[{{\text{H}}_{\text{2}}}{\text{O}}\] is large, that is why it can be taken as constant .
\[{{\text{K}}_w}{\text{ = }}\left[ {{{\text{H}}^{\text{ + }}}} \right]{\text{ }}\left[ {{\text{O}}{{\text{H}}^{\text{ - }}}} \right]\]
Where, \[{{\text{K}}_w}\] is the equilibrium constant.
Pure water means the concentration of hydronium ion and hydroxide ion are equal.
\[{\text{ }}\left[ {{{\text{H}}^{\text{ + }}}} \right]{\text{ = }}\left[ {{\text{O}}{{\text{H}}^{\text{ - }}}} \right]{\text{ = 1}}{{\text{0}}^{{\text{ - 6}}}}{\text{moles/litre}}\]
Now the values in the equation, \[{{\text{K}}_w}{\text{ = }}\left[ {{{\text{H}}^{\text{ + }}}} \right]{\text{ }}\left[ {{\text{O}}{{\text{H}}^{\text{ - }}}} \right]\]
$
{K_{_W}} = {10^{ - 6}} \times {10^{ - 6}} \\
{K_W} = {10^{ - 12}} \\
$
So, the correct option is B.
Note:
When a partly soluble salt dissolves into water it forms a dynamic equilibrium between the hydrated ions and its solid salt molecule. Due to this equilibrium the amount of solid salt is hydrolyzed remains unchanged after achieving an amount of hydration. Due to this a new term is introduced which is solubility product \[\left( {{{\text{K}}_{{\text{sp}}}}} \right)\].With increasing the temperature solubility of the salt increases as well as the concentrations of solvated ions. Therefore, with increasing temperature the value of solubility product increases and vice-versa.
Complete step by step solution:
Now Given,
Concentration of \[{{\text{H}}_{\text{3}}}{{\text{O}}^{\text{ + }}}{\text{ = 1}}{{\text{0}}^{{\text{ - 6}}}}{\text{mol/litre}}\]
The ionization reaction of water is,
\[{{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {{\text{H}}^{\text{ + }}}{\text{ + O}}{{\text{H}}^{\text{ - }}}\]
The expression for equilibrium constant is,
\[{\text{K = }}\dfrac{{\left[ {{{\text{H}}^{\text{ + }}}} \right]{\text{ }}\left[ {{\text{O}}{{\text{H}}^{\text{ - }}}} \right]}}{{\left[ {{{\text{H}}_{\text{2}}}{\text{O}}} \right]}}\]
After rearranging thisformula, we get,
\[{\text{K}} \times \left[ {{{\text{H}}_{\text{2}}}{\text{O}}} \right]{\text{ = }}\left[ {{{\text{H}}^{\text{ + }}}} \right]{\text{ }}\left[ {{\text{O}}{{\text{H}}^{\text{ - }}}} \right]\]
Due to the large amount of \[{{\text{H}}_{\text{2}}}{\text{O}}\] is large, that is why it can be taken as constant .
\[{{\text{K}}_w}{\text{ = }}\left[ {{{\text{H}}^{\text{ + }}}} \right]{\text{ }}\left[ {{\text{O}}{{\text{H}}^{\text{ - }}}} \right]\]
Where, \[{{\text{K}}_w}\] is the equilibrium constant.
Pure water means the concentration of hydronium ion and hydroxide ion are equal.
\[{\text{ }}\left[ {{{\text{H}}^{\text{ + }}}} \right]{\text{ = }}\left[ {{\text{O}}{{\text{H}}^{\text{ - }}}} \right]{\text{ = 1}}{{\text{0}}^{{\text{ - 6}}}}{\text{moles/litre}}\]
Now the values in the equation, \[{{\text{K}}_w}{\text{ = }}\left[ {{{\text{H}}^{\text{ + }}}} \right]{\text{ }}\left[ {{\text{O}}{{\text{H}}^{\text{ - }}}} \right]\]
$
{K_{_W}} = {10^{ - 6}} \times {10^{ - 6}} \\
{K_W} = {10^{ - 12}} \\
$
So, the correct option is B.
Note:
When a partly soluble salt dissolves into water it forms a dynamic equilibrium between the hydrated ions and its solid salt molecule. Due to this equilibrium the amount of solid salt is hydrolyzed remains unchanged after achieving an amount of hydration. Due to this a new term is introduced which is solubility product \[\left( {{{\text{K}}_{{\text{sp}}}}} \right)\].With increasing the temperature solubility of the salt increases as well as the concentrations of solvated ions. Therefore, with increasing temperature the value of solubility product increases and vice-versa.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Thermodynamics Class 11 Notes: CBSE Chapter 5
