Answer
Verified
110.4k+ views
Hint: The chemical kinetics of catalyzed reactions in which rate expressions are indispensable during the application of catalyzed reactions. These reactions are also known as heterogeneous catalyzed reactions which vary with the partial pressure of the reactant gases above the catalyst surface.
Complete step by step solution:
To predict the kinetics of heterogeneous catalyzed reactions by Langmuir isotherm expression for equilibrium surface coverages.
Consider the surface decomposition of a molecule,
${{A}_{(g)}}\rightleftharpoons {{A}_{(ads)}}\to products$
This process is called a unimolecular decomposition reaction, which occurs uniformly across the surface sites in molecule A may be adsorbed or limited to a number of special sites. The product which is formed in this reaction is weakly bonded to the surface. The surface decomposition step is the rate-determining step.
Examples of unimolecular decomposition are the decomposition of $N{{H}_{3}}$ to ${{N}_{2}}\And {{H}_{2}}$ on metal surfaces and decomposition of phosphine on gas.
According to Langmuir adsorption isotherm, the rate of surface decomposition is \[rate=k\theta \]
Substitute the surface coverage $\theta $, the required rate in terms of the pressure of the gas on the surface,
\[rate=\dfrac{kbP}{1+bP}\]
Consider the lower pressure condition, the steady-state coverage $\theta $, is very small for the reactant molecule and proportional to pressure.
bP<<1, then $1+bP\approx 1$
then the rate becomes first order, rate=kb, if substance absorbs on surfaces, it is a first-order reaction.
Hence, the correct answer is option B.
Note: If the high-pressure conditions, the fraction of the surface covered follows the zeroth order of kinetics reaction. Because under these conditions the reactant molecules of steady surface coverage almost unity and follows a zero-order reaction.
Complete step by step solution:
To predict the kinetics of heterogeneous catalyzed reactions by Langmuir isotherm expression for equilibrium surface coverages.
Consider the surface decomposition of a molecule,
${{A}_{(g)}}\rightleftharpoons {{A}_{(ads)}}\to products$
This process is called a unimolecular decomposition reaction, which occurs uniformly across the surface sites in molecule A may be adsorbed or limited to a number of special sites. The product which is formed in this reaction is weakly bonded to the surface. The surface decomposition step is the rate-determining step.
Examples of unimolecular decomposition are the decomposition of $N{{H}_{3}}$ to ${{N}_{2}}\And {{H}_{2}}$ on metal surfaces and decomposition of phosphine on gas.
According to Langmuir adsorption isotherm, the rate of surface decomposition is \[rate=k\theta \]
Substitute the surface coverage $\theta $, the required rate in terms of the pressure of the gas on the surface,
\[rate=\dfrac{kbP}{1+bP}\]
Consider the lower pressure condition, the steady-state coverage $\theta $, is very small for the reactant molecule and proportional to pressure.
bP<<1, then $1+bP\approx 1$
then the rate becomes first order, rate=kb, if substance absorbs on surfaces, it is a first-order reaction.
Hence, the correct answer is option B.
Note: If the high-pressure conditions, the fraction of the surface covered follows the zeroth order of kinetics reaction. Because under these conditions the reactant molecules of steady surface coverage almost unity and follows a zero-order reaction.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main