Answer
Verified
112.8k+ views
Hint: There is a direct relationship between degree of dissociation for dissociation of type \[A \to B + C\]and total pressure at equilibrium; we are going to use the relation here. We will get two equations one for \[50\% \] dissociation and other for \[80\% \] dissociation. Degree of dissociation is in fraction so we need to convert the percentage into fraction. Dividing both the equations we will get the value of pressure.
Formula used: \[{{\text{K}}_{\text{p}}} = \dfrac{{{\alpha ^2} \times {{\text{P}}_{\text{T}}}}}{{(1 - {\alpha ^2})}}\] for reaction of type \[A \to B + C\]
Where, ${\alpha}_1$ is degree of dissociation, \[{{\text{K}}_P}\] is equilibrium constant in terms of pressure, \[{{\text{P}}_{\text{T}}}\] is total pressure at equilibrium.
Complete step by step solution:
α is the degree of dissociation, it is the ratio of dissociated moles to the total no of moles of the reactant. \[{{\text{K}}_P}\] is equilibrium constant which is a function of temperature, if temperature remains constant then it will not change. Hence for both the dissociation \[{{\text{K}}_P}\] will remain the same as temperature is constant. To convert α into fraction we need to divide it with 100.
So ${\alpha}_1$ will be \[\dfrac{{50}}{{100}} = 0.5\] and pressure is given to us that is \[{\text{4 atm}}\].
Putting the above value in formula:
\[{K_p} = \dfrac{{{{(0.5)}^2} \times 4}}{{(1 - {{(0.5)}^2})}} = \dfrac{1}{{0.75}}\]
Similarly ${\alpha}_1$ will be \[\dfrac{{80}}{{100}} = 0.8\]
\[{K_p} = \dfrac{{{{(0.8)}^2} \times {{\text{P}}_{\text{t}}}}}{{(1 - {{(0.8)}^2})}} = 1.777{{\text{P}}_{\text{t}}}\]
Dividing or equating both the equation we will get:
\[\dfrac{1}{{0.75}} = 1.7777{{\text{P}}_{\text{t}}}\]
Rearranging we will get the value of pressure:
\[{{\text{P}}_{\text{t}}}{\text{ = 0}}{\text{.75 atm}}\]
Hence, option C is correct.
Note: The dissociation of \[{\text{PC}}{{\text{l}}_5}\] follows the following reaction: \[{\text{PC}}{{\text{l}}_{\text{5}}}{\text{ }} \rightleftharpoons {\text{ PC}}{{\text{l}}_3}{\text{ + C}}{{\text{l}}_2}{\text{ }}\]. As we can see that the number of moles of both the product is same, this implies that pressure of these reactants will be same at equilibrium and pressure of \[{\text{PC}}{{\text{l}}_5}\] will be different.
\[{\text{a}}\] is initial moles of reactant and \[x\] is amount of reactant dissociated. In this case \[\alpha \] will be \[\dfrac{x}{{\text{a}}}\].
\[{\text{time PC}}{{\text{l}}_{\text{5}}}{\text{ }} \rightleftharpoons {\text{ PC}}{{\text{l}}_3}{\text{ + C}}{{\text{l}}_2}{\text{ }}\]
Formula used: \[{{\text{K}}_{\text{p}}} = \dfrac{{{\alpha ^2} \times {{\text{P}}_{\text{T}}}}}{{(1 - {\alpha ^2})}}\] for reaction of type \[A \to B + C\]
Where, ${\alpha}_1$ is degree of dissociation, \[{{\text{K}}_P}\] is equilibrium constant in terms of pressure, \[{{\text{P}}_{\text{T}}}\] is total pressure at equilibrium.
Complete step by step solution:
α is the degree of dissociation, it is the ratio of dissociated moles to the total no of moles of the reactant. \[{{\text{K}}_P}\] is equilibrium constant which is a function of temperature, if temperature remains constant then it will not change. Hence for both the dissociation \[{{\text{K}}_P}\] will remain the same as temperature is constant. To convert α into fraction we need to divide it with 100.
So ${\alpha}_1$ will be \[\dfrac{{50}}{{100}} = 0.5\] and pressure is given to us that is \[{\text{4 atm}}\].
Putting the above value in formula:
\[{K_p} = \dfrac{{{{(0.5)}^2} \times 4}}{{(1 - {{(0.5)}^2})}} = \dfrac{1}{{0.75}}\]
Similarly ${\alpha}_1$ will be \[\dfrac{{80}}{{100}} = 0.8\]
\[{K_p} = \dfrac{{{{(0.8)}^2} \times {{\text{P}}_{\text{t}}}}}{{(1 - {{(0.8)}^2})}} = 1.777{{\text{P}}_{\text{t}}}\]
Dividing or equating both the equation we will get:
\[\dfrac{1}{{0.75}} = 1.7777{{\text{P}}_{\text{t}}}\]
Rearranging we will get the value of pressure:
\[{{\text{P}}_{\text{t}}}{\text{ = 0}}{\text{.75 atm}}\]
Hence, option C is correct.
Note: The dissociation of \[{\text{PC}}{{\text{l}}_5}\] follows the following reaction: \[{\text{PC}}{{\text{l}}_{\text{5}}}{\text{ }} \rightleftharpoons {\text{ PC}}{{\text{l}}_3}{\text{ + C}}{{\text{l}}_2}{\text{ }}\]. As we can see that the number of moles of both the product is same, this implies that pressure of these reactants will be same at equilibrium and pressure of \[{\text{PC}}{{\text{l}}_5}\] will be different.
\[{\text{a}}\] is initial moles of reactant and \[x\] is amount of reactant dissociated. In this case \[\alpha \] will be \[\dfrac{x}{{\text{a}}}\].
\[{\text{time PC}}{{\text{l}}_{\text{5}}}{\text{ }} \rightleftharpoons {\text{ PC}}{{\text{l}}_3}{\text{ + C}}{{\text{l}}_2}{\text{ }}\]
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main Chemistry Question Paper PDF Download with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
Average and RMS Value for JEE Main
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Displacement-Time Graph and Velocity-Time Graph for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inertial and Non-Inertial Frame of Reference - JEE Important Topic
Semicircular Ring - Centre of Mass and Its Application for JEE