
At temperature \[T{\text{ K, PC}}{{\text{l}}_5}\] is \[50\% \] dissociated at an equilibrium pressure of \[{\text{4 atm}}\]. At what pressure it would dissociate to the extent of \[80\% \] at the same temperature?
A.\[{\text{0}}{\text{.05 atm}}\]
B.\[{\text{0}}{\text{.60 atm}}\]
C.\[{\text{0}}{\text{.75 atm}}\]
D.\[{\text{0}}{\text{.25 atm}}\]
Answer
224.4k+ views
Hint: There is a direct relationship between degree of dissociation for dissociation of type \[A \to B + C\]and total pressure at equilibrium; we are going to use the relation here. We will get two equations one for \[50\% \] dissociation and other for \[80\% \] dissociation. Degree of dissociation is in fraction so we need to convert the percentage into fraction. Dividing both the equations we will get the value of pressure.
Formula used: \[{{\text{K}}_{\text{p}}} = \dfrac{{{\alpha ^2} \times {{\text{P}}_{\text{T}}}}}{{(1 - {\alpha ^2})}}\] for reaction of type \[A \to B + C\]
Where, ${\alpha}_1$ is degree of dissociation, \[{{\text{K}}_P}\] is equilibrium constant in terms of pressure, \[{{\text{P}}_{\text{T}}}\] is total pressure at equilibrium.
Complete step by step solution:
α is the degree of dissociation, it is the ratio of dissociated moles to the total no of moles of the reactant. \[{{\text{K}}_P}\] is equilibrium constant which is a function of temperature, if temperature remains constant then it will not change. Hence for both the dissociation \[{{\text{K}}_P}\] will remain the same as temperature is constant. To convert α into fraction we need to divide it with 100.
So ${\alpha}_1$ will be \[\dfrac{{50}}{{100}} = 0.5\] and pressure is given to us that is \[{\text{4 atm}}\].
Putting the above value in formula:
\[{K_p} = \dfrac{{{{(0.5)}^2} \times 4}}{{(1 - {{(0.5)}^2})}} = \dfrac{1}{{0.75}}\]
Similarly ${\alpha}_1$ will be \[\dfrac{{80}}{{100}} = 0.8\]
\[{K_p} = \dfrac{{{{(0.8)}^2} \times {{\text{P}}_{\text{t}}}}}{{(1 - {{(0.8)}^2})}} = 1.777{{\text{P}}_{\text{t}}}\]
Dividing or equating both the equation we will get:
\[\dfrac{1}{{0.75}} = 1.7777{{\text{P}}_{\text{t}}}\]
Rearranging we will get the value of pressure:
\[{{\text{P}}_{\text{t}}}{\text{ = 0}}{\text{.75 atm}}\]
Hence, option C is correct.
Note: The dissociation of \[{\text{PC}}{{\text{l}}_5}\] follows the following reaction: \[{\text{PC}}{{\text{l}}_{\text{5}}}{\text{ }} \rightleftharpoons {\text{ PC}}{{\text{l}}_3}{\text{ + C}}{{\text{l}}_2}{\text{ }}\]. As we can see that the number of moles of both the product is same, this implies that pressure of these reactants will be same at equilibrium and pressure of \[{\text{PC}}{{\text{l}}_5}\] will be different.
\[{\text{a}}\] is initial moles of reactant and \[x\] is amount of reactant dissociated. In this case \[\alpha \] will be \[\dfrac{x}{{\text{a}}}\].
\[{\text{time PC}}{{\text{l}}_{\text{5}}}{\text{ }} \rightleftharpoons {\text{ PC}}{{\text{l}}_3}{\text{ + C}}{{\text{l}}_2}{\text{ }}\]
Formula used: \[{{\text{K}}_{\text{p}}} = \dfrac{{{\alpha ^2} \times {{\text{P}}_{\text{T}}}}}{{(1 - {\alpha ^2})}}\] for reaction of type \[A \to B + C\]
Where, ${\alpha}_1$ is degree of dissociation, \[{{\text{K}}_P}\] is equilibrium constant in terms of pressure, \[{{\text{P}}_{\text{T}}}\] is total pressure at equilibrium.
Complete step by step solution:
α is the degree of dissociation, it is the ratio of dissociated moles to the total no of moles of the reactant. \[{{\text{K}}_P}\] is equilibrium constant which is a function of temperature, if temperature remains constant then it will not change. Hence for both the dissociation \[{{\text{K}}_P}\] will remain the same as temperature is constant. To convert α into fraction we need to divide it with 100.
So ${\alpha}_1$ will be \[\dfrac{{50}}{{100}} = 0.5\] and pressure is given to us that is \[{\text{4 atm}}\].
Putting the above value in formula:
\[{K_p} = \dfrac{{{{(0.5)}^2} \times 4}}{{(1 - {{(0.5)}^2})}} = \dfrac{1}{{0.75}}\]
Similarly ${\alpha}_1$ will be \[\dfrac{{80}}{{100}} = 0.8\]
\[{K_p} = \dfrac{{{{(0.8)}^2} \times {{\text{P}}_{\text{t}}}}}{{(1 - {{(0.8)}^2})}} = 1.777{{\text{P}}_{\text{t}}}\]
Dividing or equating both the equation we will get:
\[\dfrac{1}{{0.75}} = 1.7777{{\text{P}}_{\text{t}}}\]
Rearranging we will get the value of pressure:
\[{{\text{P}}_{\text{t}}}{\text{ = 0}}{\text{.75 atm}}\]
Hence, option C is correct.
Note: The dissociation of \[{\text{PC}}{{\text{l}}_5}\] follows the following reaction: \[{\text{PC}}{{\text{l}}_{\text{5}}}{\text{ }} \rightleftharpoons {\text{ PC}}{{\text{l}}_3}{\text{ + C}}{{\text{l}}_2}{\text{ }}\]. As we can see that the number of moles of both the product is same, this implies that pressure of these reactants will be same at equilibrium and pressure of \[{\text{PC}}{{\text{l}}_5}\] will be different.
\[{\text{a}}\] is initial moles of reactant and \[x\] is amount of reactant dissociated. In this case \[\alpha \] will be \[\dfrac{x}{{\text{a}}}\].
\[{\text{time PC}}{{\text{l}}_{\text{5}}}{\text{ }} \rightleftharpoons {\text{ PC}}{{\text{l}}_3}{\text{ + C}}{{\text{l}}_2}{\text{ }}\]
Recently Updated Pages
JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Introduction to Dimensions: Understanding the Basics

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Hybridisation in Chemistry – Concept, Types & Applications

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

