
What is the bond angle in $Cl{{O}_{2}}^{-}$ (OClO)?
A. $90{}^\circ $
B. $120{}^\circ $
C. $105{}^\circ $
D. $111{}^\circ $
Answer
232.8k+ views
Hint: Think about the geometry of the chlorite ion and how the chlorine accommodates the lone pairs and bond pairs. Take into consideration the types of repulsion between lone pairs, bond pairs, double bonds, and charged particles.
Complete step by step solution:
We know that the chlorine atom has 2 lone pairs in the hybridized orbitals, it forms bonds with two oxygen atoms. Thus, the geometry of this molecule will be bent with respect to the atoms involved and tetrahedral with all the atoms as well as lone pairs involved. The structure is as follows:

We know that the bond angle between tetrahedral structures is usually $109.47{}^\circ $ but taking into account the presence of lone pair repulsion this may change. Here, the repulsion between the lone pairs on the $O$ atoms, the double bonds present and the charge on the $O$ atom is greater than the repulsion between bond pairs. This will lead to an angle that is larger than expected. The repulsion between double bonds has a similar magnitude as that of the repulsion between lone pairs, but the other factors involved overcome this and increase the bond angle.
Hence, the answer is ‘D. $111{}^\circ $’
Note: Remember that going by superficial information may cause you to go wrong. Just the presence of the lone pairs on the chlorine atom will lead you to believe that the bond angle will decrease from the standard $109.47{}^\circ $ in tetrahedral structures to $105{}^\circ $. But other factors should also be taken into consideration. Draw the diagram and analyse it carefully before marking the correct answer.
Complete step by step solution:
We know that the chlorine atom has 2 lone pairs in the hybridized orbitals, it forms bonds with two oxygen atoms. Thus, the geometry of this molecule will be bent with respect to the atoms involved and tetrahedral with all the atoms as well as lone pairs involved. The structure is as follows:

We know that the bond angle between tetrahedral structures is usually $109.47{}^\circ $ but taking into account the presence of lone pair repulsion this may change. Here, the repulsion between the lone pairs on the $O$ atoms, the double bonds present and the charge on the $O$ atom is greater than the repulsion between bond pairs. This will lead to an angle that is larger than expected. The repulsion between double bonds has a similar magnitude as that of the repulsion between lone pairs, but the other factors involved overcome this and increase the bond angle.
Hence, the answer is ‘D. $111{}^\circ $’
Note: Remember that going by superficial information may cause you to go wrong. Just the presence of the lone pairs on the chlorine atom will lead you to believe that the bond angle will decrease from the standard $109.47{}^\circ $ in tetrahedral structures to $105{}^\circ $. But other factors should also be taken into consideration. Draw the diagram and analyse it carefully before marking the correct answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

