Answer
Verified
108.9k+ views
Hint Moment of force is a measure of tendency of the force to cause rotation in a body about a specific point or axis. Its value is equal to that of torque and is given by $\tau = \vec r \times \vec F$ where $\vec F$ is the force in consideration and $\vec r$ is the position vector of force with respect to a fixed point about which moment is to be calculated.
The direction of the moment of force is given by the right hand thumb rule which states that if we roll our fingers from $\vec r$ towards the force $\vec F$ then the direction of thumb gives the direction of the moment of force.
Complete step by step answer
Let us first discuss the moment of a force.
Moment of force is a measure of tendency of the force to cause rotation in a body about a specific point or axis. Its value is equal to that of torque and is given by $\tau = \vec r \times \vec F$ where $\vec F$ is the force in consideration and $\vec r$ is the position vector of force with respect to a fixed point about which moment is to be calculated.
The direction of the moment of force can be found out by the basic rule of cross product or by the right hand thumb rule which states that if we roll our fingers from $\vec r$ towards the force $\vec F$ then the direction of thumb gives the direction of the moment of force.
Now, let us consider the force ${F_1}$ .
The position vector from point O has magnitude $r = 2m$ which is at right angle to the force.
Since, $\tau = \vec r \times \vec F = r \times F \times \sin 90^\circ = r \times F$
Therefore, for force ${F_1}$ , moment about O is given by
${\tau _1} = 2 \times 5 = 10{\text{ Nm (anti clockwise)}}$
Now, for force ${F_2}$ , the position vector about O has magnitude $r = 4m$ which is also perpendicular to the force. So, the moment about O is given by
${\tau _2} = 4 \times 3 = 12{\text{ Nm (clockwise)}}$
Let us consider the clockwise direction to be positive. Therefore, the net moment of the forces about the point O will be the vector sum of the two forces and given by
$\tau = 12 - 10 = 2{\text{ Nm (clockwise)}}$
Hence, option A is correct.
Note Although the unit of torque and moment is the same that is ‘Nm’ but there are certain differences between them. Torque is related to the movement but the moment is a static force. Torque can be used to measure the coupling whereas moment is not used for this purpose.
The direction of the moment of force is given by the right hand thumb rule which states that if we roll our fingers from $\vec r$ towards the force $\vec F$ then the direction of thumb gives the direction of the moment of force.
Complete step by step answer
Let us first discuss the moment of a force.
Moment of force is a measure of tendency of the force to cause rotation in a body about a specific point or axis. Its value is equal to that of torque and is given by $\tau = \vec r \times \vec F$ where $\vec F$ is the force in consideration and $\vec r$ is the position vector of force with respect to a fixed point about which moment is to be calculated.
The direction of the moment of force can be found out by the basic rule of cross product or by the right hand thumb rule which states that if we roll our fingers from $\vec r$ towards the force $\vec F$ then the direction of thumb gives the direction of the moment of force.
Now, let us consider the force ${F_1}$ .
The position vector from point O has magnitude $r = 2m$ which is at right angle to the force.
Since, $\tau = \vec r \times \vec F = r \times F \times \sin 90^\circ = r \times F$
Therefore, for force ${F_1}$ , moment about O is given by
${\tau _1} = 2 \times 5 = 10{\text{ Nm (anti clockwise)}}$
Now, for force ${F_2}$ , the position vector about O has magnitude $r = 4m$ which is also perpendicular to the force. So, the moment about O is given by
${\tau _2} = 4 \times 3 = 12{\text{ Nm (clockwise)}}$
Let us consider the clockwise direction to be positive. Therefore, the net moment of the forces about the point O will be the vector sum of the two forces and given by
$\tau = 12 - 10 = 2{\text{ Nm (clockwise)}}$
Hence, option A is correct.
Note Although the unit of torque and moment is the same that is ‘Nm’ but there are certain differences between them. Torque is related to the movement but the moment is a static force. Torque can be used to measure the coupling whereas moment is not used for this purpose.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main