
How many degrees of freedom are associated with 2 grams of He at NTP?
A) 3
B) $3 \cdot 01 \times {10^{23}}$
C) $9 \cdot 03 \times {10^{23}}$
D) 6
Answer
132.9k+ views
Hint: Firstly we calculate the number of moles in 2 gram of helium .
After that we calculate number of molecules of helium in given number of moles
Now we already know that there are 3 degrees of freedom corresponding to 1 molecule of a monatomic gas.
Finally to calculate the total number of degrees of freedom in a monatomic gas we multiply the number of molecules and degree of freedom of 1 monatomic gas.
Complete step by step process:
According to the question we have 2 gm of helium.
Number of moles =given mass of substance divided by molar mass.
$\therefore $we already know the molar mass of He is 4 amu
So, moles of He=$\dfrac{2}{4} = \dfrac{1}{2}$
Now to calculate moles into molecules we multiply moles with the Avogadro's number
Mathematically, $N = m \times {A_0}$ where N=number of molecules
M=number of moles
${A_o}$=Avogadro's number
So ,$N = 6 \cdot 02 \times {10^{^{23}}} \times \dfrac{1}{2}$
$N = 3 \cdot 01 \times {10^{23}}$
Hence total number of molecules in $\dfrac{1}{2}$moles of He is $3 \cdot 01 \times {10^{23}}$
Now total degree of freedom is equal to molecules multiply by degree of freedom of 1 monatomic gas
$\therefore $total degree of freedom =$3 \times 3 \cdot 01 \times {10^{23}}$
Total degree of freedom =$9 \cdot 03 \times {10^{23}}$.
Hence, option (C) is the best option.
Note: Degree of freedom, often abbreviated as df, is a concept that may be thought of as that part of the sample size n not otherwise allocated. Df is related to the sample number, usually to the number of observations for continuous data methods and to the number of categories for categorical data methods.
After that we calculate number of molecules of helium in given number of moles
Now we already know that there are 3 degrees of freedom corresponding to 1 molecule of a monatomic gas.
Finally to calculate the total number of degrees of freedom in a monatomic gas we multiply the number of molecules and degree of freedom of 1 monatomic gas.
Complete step by step process:
According to the question we have 2 gm of helium.
Number of moles =given mass of substance divided by molar mass.
$\therefore $we already know the molar mass of He is 4 amu
So, moles of He=$\dfrac{2}{4} = \dfrac{1}{2}$
Now to calculate moles into molecules we multiply moles with the Avogadro's number
Mathematically, $N = m \times {A_0}$ where N=number of molecules
M=number of moles
${A_o}$=Avogadro's number
So ,$N = 6 \cdot 02 \times {10^{^{23}}} \times \dfrac{1}{2}$
$N = 3 \cdot 01 \times {10^{23}}$
Hence total number of molecules in $\dfrac{1}{2}$moles of He is $3 \cdot 01 \times {10^{23}}$
Now total degree of freedom is equal to molecules multiply by degree of freedom of 1 monatomic gas
$\therefore $total degree of freedom =$3 \times 3 \cdot 01 \times {10^{23}}$
Total degree of freedom =$9 \cdot 03 \times {10^{23}}$.
Hence, option (C) is the best option.
Note: Degree of freedom, often abbreviated as df, is a concept that may be thought of as that part of the sample size n not otherwise allocated. Df is related to the sample number, usually to the number of observations for continuous data methods and to the number of categories for categorical data methods.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 11th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

JEE Main Syllabus 2025 (Updated)

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
