
Evaluate the integral\[\int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} \]? (For some arbitrary constant k)
$
(a)\dfrac{{ - 1}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^3}}}{7}} \right) + k \\
(b)\dfrac{{ - 1}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x - \tan x} \right)}^2}}}{7}} \right) + k \\
(c)\dfrac{{ - 1}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k \\
(d)\dfrac{1}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k \\
$
Answer
232.8k+ views
Hint: In this question use the concept of substitution, let \[\sec x + \tan x\] be equal to some variable, then differentiate both sides and solve further by substituting it back to the main integral and use basic trigonometric identities to get the answer.
Complete step-by-step answer:
Let \[I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} \]
Substitute \[\sec x + \tan x = t\]………………… (1)
So differentiate it w.r.t. x we have,
$ \Rightarrow \left( {\sec x\tan x + {{\sec }^2}x} \right)dx = dt$
Now simplify it we have,
$ \Rightarrow \sec x\left( {\tan x + \sec x} \right)dx = dt$
So from equation (1) we have
$ \Rightarrow \sec xdx = \dfrac{{dt}}{t}$
Now from equation (1) the value of $\dfrac{1}{t}$ =$\dfrac{1}{{\sec x + \tan x}}$………………….. (2)
Now add equation (1) and (2) we have,
$t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}}$
Now in extreme left most part multiply and divide by $\left( {\sec x - \tan x} \right)$ we have,
\[t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}} \times \dfrac{{\sec x - \tan x}}{{\sec x - \tan x}}\]
Now in denominator it is in the form of $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{{\sec x - \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}}\]
And we know that the value of \[{\sec ^2}x - {\tan ^2}x\] is 1.
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \sec x - \tan x = 2\sec x\]
$ \Rightarrow \sec x = \dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)$………………….. (3)
So from equation (1), (2) and (3) the integral becomes
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} = \int {\dfrac{{\sec x}}{{{{\left( t \right)}^{\dfrac{9}{2}}}}}\left( {\dfrac{{dt}}{t}} \right)} = \int {\dfrac{{\dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt\]
Now simplify the above integral we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\dfrac{{\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt = \dfrac{1}{2}\int {\left( {\dfrac{t}{{{t^{\dfrac{{11}}{2}}}}} + \dfrac{1}{{{t^{\dfrac{{11}}{2} + 1}}}}} \right)} dt = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} \]
Now as we know \[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \] where k is some arbitrary integration constant, so use this property we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} = \dfrac{1}{2}\left( {\dfrac{{{t^{\dfrac{{ - 9}}{2} + 1}}}}{{\dfrac{{ - 9}}{2} + 1}} + \dfrac{{{t^{\dfrac{{ - 13}}{2} + 1}}}}{{\dfrac{{ - 13}}{2} + 1}}} \right) + k\]
Now simplify it we have,
\[ \Rightarrow I = \dfrac{1}{2}\left( { - \dfrac{2}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{2}{{11}}{t^{\dfrac{{ - 11}}{2}}}} \right) + k = - \dfrac{1}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{1}{{11}}{t^{\dfrac{{ - 11}}{2}}} + k = - \left( {\dfrac{1}{{7{t^{\dfrac{7}{2}}}}} + \dfrac{1}{{11{t^{\dfrac{{11}}{2}}}}}} \right) + k\]
\[ \Rightarrow I = \dfrac{{ - 1}}{{{t^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{t^2}}}{7}} \right) + k\]
Now re-substitute the value of t we have,
\[ \Rightarrow I = - \dfrac{1}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k\]
So this is the required value of the integral.
Hence option (c) is correct.
Note: Whenever we face such type of problems the key concept is to have good list of the basic integration formula like\[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \]. It helps in evaluating the main integral in the last after simplification. Never forget to add the constant of integration after performing the integration.
Complete step-by-step answer:
Let \[I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} \]
Substitute \[\sec x + \tan x = t\]………………… (1)
So differentiate it w.r.t. x we have,
$ \Rightarrow \left( {\sec x\tan x + {{\sec }^2}x} \right)dx = dt$
Now simplify it we have,
$ \Rightarrow \sec x\left( {\tan x + \sec x} \right)dx = dt$
So from equation (1) we have
$ \Rightarrow \sec xdx = \dfrac{{dt}}{t}$
Now from equation (1) the value of $\dfrac{1}{t}$ =$\dfrac{1}{{\sec x + \tan x}}$………………….. (2)
Now add equation (1) and (2) we have,
$t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}}$
Now in extreme left most part multiply and divide by $\left( {\sec x - \tan x} \right)$ we have,
\[t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}} \times \dfrac{{\sec x - \tan x}}{{\sec x - \tan x}}\]
Now in denominator it is in the form of $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{{\sec x - \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}}\]
And we know that the value of \[{\sec ^2}x - {\tan ^2}x\] is 1.
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \sec x - \tan x = 2\sec x\]
$ \Rightarrow \sec x = \dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)$………………….. (3)
So from equation (1), (2) and (3) the integral becomes
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} = \int {\dfrac{{\sec x}}{{{{\left( t \right)}^{\dfrac{9}{2}}}}}\left( {\dfrac{{dt}}{t}} \right)} = \int {\dfrac{{\dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt\]
Now simplify the above integral we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\dfrac{{\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt = \dfrac{1}{2}\int {\left( {\dfrac{t}{{{t^{\dfrac{{11}}{2}}}}} + \dfrac{1}{{{t^{\dfrac{{11}}{2} + 1}}}}} \right)} dt = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} \]
Now as we know \[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \] where k is some arbitrary integration constant, so use this property we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} = \dfrac{1}{2}\left( {\dfrac{{{t^{\dfrac{{ - 9}}{2} + 1}}}}{{\dfrac{{ - 9}}{2} + 1}} + \dfrac{{{t^{\dfrac{{ - 13}}{2} + 1}}}}{{\dfrac{{ - 13}}{2} + 1}}} \right) + k\]
Now simplify it we have,
\[ \Rightarrow I = \dfrac{1}{2}\left( { - \dfrac{2}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{2}{{11}}{t^{\dfrac{{ - 11}}{2}}}} \right) + k = - \dfrac{1}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{1}{{11}}{t^{\dfrac{{ - 11}}{2}}} + k = - \left( {\dfrac{1}{{7{t^{\dfrac{7}{2}}}}} + \dfrac{1}{{11{t^{\dfrac{{11}}{2}}}}}} \right) + k\]
\[ \Rightarrow I = \dfrac{{ - 1}}{{{t^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{t^2}}}{7}} \right) + k\]
Now re-substitute the value of t we have,
\[ \Rightarrow I = - \dfrac{1}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k\]
So this is the required value of the integral.
Hence option (c) is correct.
Note: Whenever we face such type of problems the key concept is to have good list of the basic integration formula like\[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \]. It helps in evaluating the main integral in the last after simplification. Never forget to add the constant of integration after performing the integration.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

