Answer
Verified
110.7k+ views
Hint: In this question use the concept of substitution, let \[\sec x + \tan x\] be equal to some variable, then differentiate both sides and solve further by substituting it back to the main integral and use basic trigonometric identities to get the answer.
Complete step-by-step answer:
Let \[I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} \]
Substitute \[\sec x + \tan x = t\]………………… (1)
So differentiate it w.r.t. x we have,
$ \Rightarrow \left( {\sec x\tan x + {{\sec }^2}x} \right)dx = dt$
Now simplify it we have,
$ \Rightarrow \sec x\left( {\tan x + \sec x} \right)dx = dt$
So from equation (1) we have
$ \Rightarrow \sec xdx = \dfrac{{dt}}{t}$
Now from equation (1) the value of $\dfrac{1}{t}$ =$\dfrac{1}{{\sec x + \tan x}}$………………….. (2)
Now add equation (1) and (2) we have,
$t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}}$
Now in extreme left most part multiply and divide by $\left( {\sec x - \tan x} \right)$ we have,
\[t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}} \times \dfrac{{\sec x - \tan x}}{{\sec x - \tan x}}\]
Now in denominator it is in the form of $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{{\sec x - \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}}\]
And we know that the value of \[{\sec ^2}x - {\tan ^2}x\] is 1.
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \sec x - \tan x = 2\sec x\]
$ \Rightarrow \sec x = \dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)$………………….. (3)
So from equation (1), (2) and (3) the integral becomes
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} = \int {\dfrac{{\sec x}}{{{{\left( t \right)}^{\dfrac{9}{2}}}}}\left( {\dfrac{{dt}}{t}} \right)} = \int {\dfrac{{\dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt\]
Now simplify the above integral we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\dfrac{{\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt = \dfrac{1}{2}\int {\left( {\dfrac{t}{{{t^{\dfrac{{11}}{2}}}}} + \dfrac{1}{{{t^{\dfrac{{11}}{2} + 1}}}}} \right)} dt = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} \]
Now as we know \[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \] where k is some arbitrary integration constant, so use this property we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} = \dfrac{1}{2}\left( {\dfrac{{{t^{\dfrac{{ - 9}}{2} + 1}}}}{{\dfrac{{ - 9}}{2} + 1}} + \dfrac{{{t^{\dfrac{{ - 13}}{2} + 1}}}}{{\dfrac{{ - 13}}{2} + 1}}} \right) + k\]
Now simplify it we have,
\[ \Rightarrow I = \dfrac{1}{2}\left( { - \dfrac{2}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{2}{{11}}{t^{\dfrac{{ - 11}}{2}}}} \right) + k = - \dfrac{1}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{1}{{11}}{t^{\dfrac{{ - 11}}{2}}} + k = - \left( {\dfrac{1}{{7{t^{\dfrac{7}{2}}}}} + \dfrac{1}{{11{t^{\dfrac{{11}}{2}}}}}} \right) + k\]
\[ \Rightarrow I = \dfrac{{ - 1}}{{{t^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{t^2}}}{7}} \right) + k\]
Now re-substitute the value of t we have,
\[ \Rightarrow I = - \dfrac{1}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k\]
So this is the required value of the integral.
Hence option (c) is correct.
Note: Whenever we face such type of problems the key concept is to have good list of the basic integration formula like\[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \]. It helps in evaluating the main integral in the last after simplification. Never forget to add the constant of integration after performing the integration.
Complete step-by-step answer:
Let \[I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} \]
Substitute \[\sec x + \tan x = t\]………………… (1)
So differentiate it w.r.t. x we have,
$ \Rightarrow \left( {\sec x\tan x + {{\sec }^2}x} \right)dx = dt$
Now simplify it we have,
$ \Rightarrow \sec x\left( {\tan x + \sec x} \right)dx = dt$
So from equation (1) we have
$ \Rightarrow \sec xdx = \dfrac{{dt}}{t}$
Now from equation (1) the value of $\dfrac{1}{t}$ =$\dfrac{1}{{\sec x + \tan x}}$………………….. (2)
Now add equation (1) and (2) we have,
$t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}}$
Now in extreme left most part multiply and divide by $\left( {\sec x - \tan x} \right)$ we have,
\[t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}} \times \dfrac{{\sec x - \tan x}}{{\sec x - \tan x}}\]
Now in denominator it is in the form of $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{{\sec x - \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}}\]
And we know that the value of \[{\sec ^2}x - {\tan ^2}x\] is 1.
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \sec x - \tan x = 2\sec x\]
$ \Rightarrow \sec x = \dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)$………………….. (3)
So from equation (1), (2) and (3) the integral becomes
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} = \int {\dfrac{{\sec x}}{{{{\left( t \right)}^{\dfrac{9}{2}}}}}\left( {\dfrac{{dt}}{t}} \right)} = \int {\dfrac{{\dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt\]
Now simplify the above integral we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\dfrac{{\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt = \dfrac{1}{2}\int {\left( {\dfrac{t}{{{t^{\dfrac{{11}}{2}}}}} + \dfrac{1}{{{t^{\dfrac{{11}}{2} + 1}}}}} \right)} dt = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} \]
Now as we know \[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \] where k is some arbitrary integration constant, so use this property we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} = \dfrac{1}{2}\left( {\dfrac{{{t^{\dfrac{{ - 9}}{2} + 1}}}}{{\dfrac{{ - 9}}{2} + 1}} + \dfrac{{{t^{\dfrac{{ - 13}}{2} + 1}}}}{{\dfrac{{ - 13}}{2} + 1}}} \right) + k\]
Now simplify it we have,
\[ \Rightarrow I = \dfrac{1}{2}\left( { - \dfrac{2}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{2}{{11}}{t^{\dfrac{{ - 11}}{2}}}} \right) + k = - \dfrac{1}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{1}{{11}}{t^{\dfrac{{ - 11}}{2}}} + k = - \left( {\dfrac{1}{{7{t^{\dfrac{7}{2}}}}} + \dfrac{1}{{11{t^{\dfrac{{11}}{2}}}}}} \right) + k\]
\[ \Rightarrow I = \dfrac{{ - 1}}{{{t^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{t^2}}}{7}} \right) + k\]
Now re-substitute the value of t we have,
\[ \Rightarrow I = - \dfrac{1}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k\]
So this is the required value of the integral.
Hence option (c) is correct.
Note: Whenever we face such type of problems the key concept is to have good list of the basic integration formula like\[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \]. It helps in evaluating the main integral in the last after simplification. Never forget to add the constant of integration after performing the integration.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main