Find a vector perpendicular to ${{\hat i + 2 \hat j}}$ magnitude of ${{3}}\sqrt {{5}}$.
A) $3 \hat i + 6 \hat j$
B) $6 \hat i - 3 \hat j$
C) $4 \hat i - 2 \hat j$
D) $ \hat i - 2 \hat j$
Answer
Verified
122.7k+ views
Hint: In order to find a vector, first of all consider a general vector. Let us consider the given vector to be ${{\overrightarrow r = x \hat i + y \hat j}}$. We know that if two vectors are mutually perpendicular to each other then their dot product is zero. Now, find the dot product of both the vectors. Relate the obtained equation and the given equation to find the components of the vector. And the components of the vector are found by substitution method.
Complete step by step solution:
Let us consider that the required vector is ${{\overrightarrow r = x \hat i + y \hat j}}$
According to the question, ${{x \hat i + y \hat j}}$ is perpendicular to ${{\overrightarrow A = \hat i + 2 \hat j}}$.
When one vector is perpendicular to the other vector then the dot product of both the vectors is zero.
Thus, the dot product of vector ${{\overrightarrow r = x \hat i + y \hat j}}$ and vector ${{\overrightarrow A = \hat i + 2 \hat j}}$ must be zero.
Now, finding the dot product of both the vectors
$
\Rightarrow {{\overrightarrow r}}{{. \overrightarrow A = (x \hat i + y \hat j)}}{{.(\hat i + 2 \hat j)}} \\
\Rightarrow {{x + 2 y = 0}} \\
\Rightarrow {{x = - 2 y}}...{{(i)}} $
Given that the magnitude of vector r is ${{3}}\sqrt {{5}} $
So, ${{|r| = }}\sqrt {{{{x}}^{{2}}}{{ + }}{{{y}}^{{2}}}} {{ = 3}}\sqrt 5 $
Squaring both sides, we get
$
\Rightarrow {\left( {\sqrt {{{{x}}^{{2}}}{{ + }}{{{y}}^{{2}}}} } \right)^2}{{ = }}{\left( {{{3}}\sqrt 5 } \right)^2} \\
\Rightarrow {{{x}}^{{2}}}{{ + }}{{{y}}^{{2}}}{{ }} = {{ }}45$
Substituting the value of x from (i), we get
$
\Rightarrow {{{( - 2 y)}}^{{2}}}{{ + }}{{{y}}^{{2}}}{{ = 45}} \\
\Rightarrow {{5 }}{{{y}}^2}{{ }} = {{ }}45 \\
\therefore {{y = 3}} $
Now substituting this value of y in equation (i), we get
$
\Rightarrow {{x = - 2 y = - 2 (3)}} \\
\Rightarrow {{x = - 6}}$
Hence, the required vector becomes
$\Rightarrow {{\overrightarrow r = 6 \hat i - 3 \hat j}}$
Therefore, option (B) is the correct choice.
Note: In a two-dimensional coordinate system, any vector can be broken into x - component and y - component. Let us consider the general vector, ${{\overrightarrow r = x \hat i + y \hat j + \hat z k}}$. But in the question, we have assumed the general vector to be ${{\overrightarrow r = x \hat i + y \hat j}}$. This is because of the fact that the other vector which is provided in the question stem i.e. ${{\hat i + 2 \hat j}}$ does not involve a vector of z - component. Each part of the two-dimensional vector is also known as a component. The components of a given vector depicts the influence of that vector in a given direction.
Complete step by step solution:
Let us consider that the required vector is ${{\overrightarrow r = x \hat i + y \hat j}}$
According to the question, ${{x \hat i + y \hat j}}$ is perpendicular to ${{\overrightarrow A = \hat i + 2 \hat j}}$.
When one vector is perpendicular to the other vector then the dot product of both the vectors is zero.
Thus, the dot product of vector ${{\overrightarrow r = x \hat i + y \hat j}}$ and vector ${{\overrightarrow A = \hat i + 2 \hat j}}$ must be zero.
Now, finding the dot product of both the vectors
$
\Rightarrow {{\overrightarrow r}}{{. \overrightarrow A = (x \hat i + y \hat j)}}{{.(\hat i + 2 \hat j)}} \\
\Rightarrow {{x + 2 y = 0}} \\
\Rightarrow {{x = - 2 y}}...{{(i)}} $
Given that the magnitude of vector r is ${{3}}\sqrt {{5}} $
So, ${{|r| = }}\sqrt {{{{x}}^{{2}}}{{ + }}{{{y}}^{{2}}}} {{ = 3}}\sqrt 5 $
Squaring both sides, we get
$
\Rightarrow {\left( {\sqrt {{{{x}}^{{2}}}{{ + }}{{{y}}^{{2}}}} } \right)^2}{{ = }}{\left( {{{3}}\sqrt 5 } \right)^2} \\
\Rightarrow {{{x}}^{{2}}}{{ + }}{{{y}}^{{2}}}{{ }} = {{ }}45$
Substituting the value of x from (i), we get
$
\Rightarrow {{{( - 2 y)}}^{{2}}}{{ + }}{{{y}}^{{2}}}{{ = 45}} \\
\Rightarrow {{5 }}{{{y}}^2}{{ }} = {{ }}45 \\
\therefore {{y = 3}} $
Now substituting this value of y in equation (i), we get
$
\Rightarrow {{x = - 2 y = - 2 (3)}} \\
\Rightarrow {{x = - 6}}$
Hence, the required vector becomes
$\Rightarrow {{\overrightarrow r = 6 \hat i - 3 \hat j}}$
Therefore, option (B) is the correct choice.
Note: In a two-dimensional coordinate system, any vector can be broken into x - component and y - component. Let us consider the general vector, ${{\overrightarrow r = x \hat i + y \hat j + \hat z k}}$. But in the question, we have assumed the general vector to be ${{\overrightarrow r = x \hat i + y \hat j}}$. This is because of the fact that the other vector which is provided in the question stem i.e. ${{\hat i + 2 \hat j}}$ does not involve a vector of z - component. Each part of the two-dimensional vector is also known as a component. The components of a given vector depicts the influence of that vector in a given direction.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line