Answer
Verified
110.7k+ views
Hint: If \[\alpha \] is the angle between two lines having slopes \[{{m}_{1}}\] and \[{{m}_{2}}\], then
\[\tan \alpha =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|\]
The given equation of the parabola is \[{{y}^{2}}=4ax\].
We will consider two points \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] on the parabola , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
We need to find the equation of tangents at these points.
Now , we know the general equation of tangent at \[\left( a{{t}^{2}},2at \right)\] is given by \[ty=x+a{{t}^{2}}\], where \[t\] is a parameter .
So , the equation of tangent at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given by substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent .
On substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent , we get
\[{{t}_{1}}y=x+at_{1}^{2}.....\left( i \right)\]
Similarly , the equation of tangent at \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given as
\[{{t}_{2}}y=x+at_{2}^{2}.....\left( ii \right)\]
Now, we need to find their point of intersection . To find the point of intersection , we will substitute the value of \[x\] from equation \[\left( i \right)\] in equation \[\left( ii \right)\].
From \[\left( i \right)\], we have
\[{{t}_{1}}y=x+at_{1}^{2}\]
\[\Rightarrow x={{t}_{1}}\left( y-a{{t}_{1}} \right)....\left( iii \right)\]
On substituting the value of \[x\] in equation \[\left( ii \right)\], we get
\[{{t}_{2}}y={{t}_{1}}\left( y-a{{t}_{1}} \right)+at_{2}^{2}\]
\[\Rightarrow \left( {{t}_{2}}-{{t}_{1}} \right)y=-at_{1}^{2}+at_{2}^{2}\]
\[\Rightarrow \left( {{t}_{2}}-{{t}_{1}} \right)y=\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)a\]
\[\Rightarrow y=a\left( {{t}_{1}}+{{t}_{2}} \right).....\left( iv \right)\]
Now , we will substitute \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( iii \right)\].
On substituting \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( iii \right)\], we get
\[x={{t}_{1}}\left( a{{t}_{1}}+a{{t}_{2}}-a{{t}_{1}} \right)\]
\[\Rightarrow x=a{{t}_{1}}{{t}_{2}}....\left( v \right)\]
Now , we need to find the locus of the point of intersection.
So , let the point of intersection be\[M\left( h,k \right)\].
Now , from equation \[\left( i \right)\], we can see that the slope of tangent is \[{{m}_{1}}=\dfrac{1}{{{t}_{1}}}\].
From equation \[\left( ii \right)\], we can see that the slope of tangent is \[{{m}_{2}}=\dfrac{1}{{{t}_{2}}}\].
Now , we know if \[\theta \] is the angle between two lines with slope \[{{m}_{1}}\] and \[{{m}_{2}}\] then ,
\[\tan \theta =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}}\]
Now , in the question it is given that the tangents include angle \[\alpha \].
So , \[\tan \alpha =\dfrac{\dfrac{1}{{{t}_{1}}}-\dfrac{1}{{{t}_{2}}}}{1+\left( \dfrac{1}{{{t}_{1}}}.\dfrac{1}{{{t}_{2}}} \right)}\]
\[\tan \alpha =\dfrac{{{t}_{2}}-{{t}_{1}}}{{{t}_{2}}{{t}_{1}}+1}\]
Now , we will square both sides .
On squaring both sides , we get
\[\left( {{\tan }^{2}}\alpha \right){{\left( {{t}_{2}}{{t}_{1}}+1 \right)}^{2}}={{\left( {{t}_{2}}-{{t}_{1}} \right)}^{2}}\]
\[\Rightarrow \left( {{\tan }^{2}}\alpha \right){{\left( {{t}_{2}}{{t}_{1}}+1 \right)}^{2}}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-4{{t}_{1}}{{t}_{2}}....\left( vi \right)\]
Now , we know \[M\left( h,k \right)\] is the point of intersection.
So , from equation \[\left( iv \right)\] and equation\[\left( v \right)\] , we get
\[h=a{{t}_{1}}{{t}_{2}}\Rightarrow {{t}_{1}}{{t}_{2}}=\dfrac{h}{a}\]
\[k=a\left( {{t}_{1}}+{{t}_{2}} \right)\Rightarrow {{t}_{1}}+{{t}_{2}}=\dfrac{k}{a}\]
Now , we will substitute the values of \[{{t}_{1}}{{t}_{2}}\] and \[\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( vi \right)\].
On substituting the values of \[{{t}_{1}}{{t}_{2}}\] and \[\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( vi \right)\], we get
\[\left( {{\tan }^{2}}\alpha \right){{\left( \dfrac{h}{a}+1 \right)}^{2}}={{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{4h}{a}\]
\[\Rightarrow \left( {{\tan }^{2}}\alpha \right){{\left( h+a \right)}^{2}}={{k}^{2}}-4ah........\]equation\[(vii)\]
Now, to find the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[(h,k)\] in equation \[(vii)\].
So , the locus of \[M\left( h,k \right)\] is given as \[\left( {{\tan }^{2}}\alpha \right){{\left( x+a \right)}^{2}}={{y}^{2}}-4ax\]
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
\[\tan \alpha =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|\]
The given equation of the parabola is \[{{y}^{2}}=4ax\].
We will consider two points \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] on the parabola , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
We need to find the equation of tangents at these points.
Now , we know the general equation of tangent at \[\left( a{{t}^{2}},2at \right)\] is given by \[ty=x+a{{t}^{2}}\], where \[t\] is a parameter .
So , the equation of tangent at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given by substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent .
On substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent , we get
\[{{t}_{1}}y=x+at_{1}^{2}.....\left( i \right)\]
Similarly , the equation of tangent at \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given as
\[{{t}_{2}}y=x+at_{2}^{2}.....\left( ii \right)\]
Now, we need to find their point of intersection . To find the point of intersection , we will substitute the value of \[x\] from equation \[\left( i \right)\] in equation \[\left( ii \right)\].
From \[\left( i \right)\], we have
\[{{t}_{1}}y=x+at_{1}^{2}\]
\[\Rightarrow x={{t}_{1}}\left( y-a{{t}_{1}} \right)....\left( iii \right)\]
On substituting the value of \[x\] in equation \[\left( ii \right)\], we get
\[{{t}_{2}}y={{t}_{1}}\left( y-a{{t}_{1}} \right)+at_{2}^{2}\]
\[\Rightarrow \left( {{t}_{2}}-{{t}_{1}} \right)y=-at_{1}^{2}+at_{2}^{2}\]
\[\Rightarrow \left( {{t}_{2}}-{{t}_{1}} \right)y=\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)a\]
\[\Rightarrow y=a\left( {{t}_{1}}+{{t}_{2}} \right).....\left( iv \right)\]
Now , we will substitute \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( iii \right)\].
On substituting \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( iii \right)\], we get
\[x={{t}_{1}}\left( a{{t}_{1}}+a{{t}_{2}}-a{{t}_{1}} \right)\]
\[\Rightarrow x=a{{t}_{1}}{{t}_{2}}....\left( v \right)\]
Now , we need to find the locus of the point of intersection.
So , let the point of intersection be\[M\left( h,k \right)\].
Now , from equation \[\left( i \right)\], we can see that the slope of tangent is \[{{m}_{1}}=\dfrac{1}{{{t}_{1}}}\].
From equation \[\left( ii \right)\], we can see that the slope of tangent is \[{{m}_{2}}=\dfrac{1}{{{t}_{2}}}\].
Now , we know if \[\theta \] is the angle between two lines with slope \[{{m}_{1}}\] and \[{{m}_{2}}\] then ,
\[\tan \theta =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}}\]
Now , in the question it is given that the tangents include angle \[\alpha \].
So , \[\tan \alpha =\dfrac{\dfrac{1}{{{t}_{1}}}-\dfrac{1}{{{t}_{2}}}}{1+\left( \dfrac{1}{{{t}_{1}}}.\dfrac{1}{{{t}_{2}}} \right)}\]
\[\tan \alpha =\dfrac{{{t}_{2}}-{{t}_{1}}}{{{t}_{2}}{{t}_{1}}+1}\]
Now , we will square both sides .
On squaring both sides , we get
\[\left( {{\tan }^{2}}\alpha \right){{\left( {{t}_{2}}{{t}_{1}}+1 \right)}^{2}}={{\left( {{t}_{2}}-{{t}_{1}} \right)}^{2}}\]
\[\Rightarrow \left( {{\tan }^{2}}\alpha \right){{\left( {{t}_{2}}{{t}_{1}}+1 \right)}^{2}}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-4{{t}_{1}}{{t}_{2}}....\left( vi \right)\]
Now , we know \[M\left( h,k \right)\] is the point of intersection.
So , from equation \[\left( iv \right)\] and equation\[\left( v \right)\] , we get
\[h=a{{t}_{1}}{{t}_{2}}\Rightarrow {{t}_{1}}{{t}_{2}}=\dfrac{h}{a}\]
\[k=a\left( {{t}_{1}}+{{t}_{2}} \right)\Rightarrow {{t}_{1}}+{{t}_{2}}=\dfrac{k}{a}\]
Now , we will substitute the values of \[{{t}_{1}}{{t}_{2}}\] and \[\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( vi \right)\].
On substituting the values of \[{{t}_{1}}{{t}_{2}}\] and \[\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( vi \right)\], we get
\[\left( {{\tan }^{2}}\alpha \right){{\left( \dfrac{h}{a}+1 \right)}^{2}}={{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{4h}{a}\]
\[\Rightarrow \left( {{\tan }^{2}}\alpha \right){{\left( h+a \right)}^{2}}={{k}^{2}}-4ah........\]equation\[(vii)\]
Now, to find the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[(h,k)\] in equation \[(vii)\].
So , the locus of \[M\left( h,k \right)\] is given as \[\left( {{\tan }^{2}}\alpha \right){{\left( x+a \right)}^{2}}={{y}^{2}}-4ax\]
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main