Answer
Verified
112.5k+ views
Hint: To solve this problem we can use the relationship between the specific heats at constant pressure and volume and the universal gas constant. The answer can be found by finding the values of specific heats at constant pressure and volume and then comparing the ratio of them with known values.
Complete step by step solution:
As explained in the hint, we will use the relation between the molar specific heats at constant pressure and volume and the universal gas constant to find out the required values using the information given in the question.
We know that,
${C_p} - {C_v} = R$----equation 1
Here ${C_p}$ is the molar specific heat capacity at constant pressure and ${C_v}$ is the molar specific heat capacity at constant volume. R is the universal gas constant having value equal to $8.314J.mo{l^{ - 1}}{K^{ - 1}}$
It is given that
$\dfrac{R}{{{C_v}}} = 0.4$
$ \Rightarrow {C_v} = \dfrac{5}{2}R$
Substituting this value in equation 1 we have
${C_p} = R + {C_v}$
$ \Rightarrow {C_p} = R + \dfrac{5}{2}R$
$ \Rightarrow {C_p} = \dfrac{7}{2}R$
The implies that,
$ \Rightarrow \gamma = \dfrac{{{C_p}}}{{{C_v}}} = \dfrac{{\dfrac{7}{2}R}}{{\dfrac{5}{2}R}}$
$ \Rightarrow \gamma = 1.4$
This ratio is known as adiabatic index or the ratio of specific heats or Laplace’s coefficient.
For monoatomic gases the value of $\gamma = 1.67$ and for diatomic gases this value is equal to $1.4$ .
For rigid diatomic gas, there are five degrees of freedom and ${C_v} = \dfrac{5}{2}R$
The calculated value of ${C_v}$ is also the same for the given problem.
Therefore, the gas is made up of molecules which are rigid diatomic.
Thus, option A is the correct option.
Note: Note that for monoatomic gas molecules the values of molar specific heat capacity at constant volume is ${C_v} = \dfrac{3}{2}R$ and value at constant pressure is ${C_p} = \dfrac{5}{2}R$. While for diatomic gas molecules, the values of molar specific heat capacity at constant pressure ${C_p} = \dfrac{7}{2}R$ and at constant volume is ${C_v} = \dfrac{5}{2}R$.
Complete step by step solution:
As explained in the hint, we will use the relation between the molar specific heats at constant pressure and volume and the universal gas constant to find out the required values using the information given in the question.
We know that,
${C_p} - {C_v} = R$----equation 1
Here ${C_p}$ is the molar specific heat capacity at constant pressure and ${C_v}$ is the molar specific heat capacity at constant volume. R is the universal gas constant having value equal to $8.314J.mo{l^{ - 1}}{K^{ - 1}}$
It is given that
$\dfrac{R}{{{C_v}}} = 0.4$
$ \Rightarrow {C_v} = \dfrac{5}{2}R$
Substituting this value in equation 1 we have
${C_p} = R + {C_v}$
$ \Rightarrow {C_p} = R + \dfrac{5}{2}R$
$ \Rightarrow {C_p} = \dfrac{7}{2}R$
The implies that,
$ \Rightarrow \gamma = \dfrac{{{C_p}}}{{{C_v}}} = \dfrac{{\dfrac{7}{2}R}}{{\dfrac{5}{2}R}}$
$ \Rightarrow \gamma = 1.4$
This ratio is known as adiabatic index or the ratio of specific heats or Laplace’s coefficient.
For monoatomic gases the value of $\gamma = 1.67$ and for diatomic gases this value is equal to $1.4$ .
For rigid diatomic gas, there are five degrees of freedom and ${C_v} = \dfrac{5}{2}R$
The calculated value of ${C_v}$ is also the same for the given problem.
Therefore, the gas is made up of molecules which are rigid diatomic.
Thus, option A is the correct option.
Note: Note that for monoatomic gas molecules the values of molar specific heat capacity at constant volume is ${C_v} = \dfrac{3}{2}R$ and value at constant pressure is ${C_p} = \dfrac{5}{2}R$. While for diatomic gas molecules, the values of molar specific heat capacity at constant pressure ${C_p} = \dfrac{7}{2}R$ and at constant volume is ${C_v} = \dfrac{5}{2}R$.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main Chemistry Question Paper PDF Download with Answer Key
Trending doubts
Average and RMS Value for JEE Main
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
The adjoining diagram shows the spectral energy density class 11 physics JEE_MAIN
Charging and Discharging of Capacitor
Displacement-Time Graph and Velocity-Time Graph for JEE
Clemmenson and Wolff Kishner Reductions for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)
Oscillations Class 11 Notes CBSE Physics Chapter 13 (Free PDF Download)
Thermal Properties of Matter Class 11 Notes CBSE Physics Chapter 10 (Free PDF Download)
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane