
For $a\in R,$ $\left| a \right|>1$ let $\displaystyle \lim_{n \to \infty}\dfrac{1+\sqrt[3]{2}+\sqrt[3]{3}+........+\sqrt[3]{n}}{{{n}^{\dfrac{7}{3}}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}=54$ , then possible value(s) of a is(are)
(a)8
(b)-9
(c)7
(d)-6
Answer
233.1k+ views
Hint: To solve this question, firstly we will simplify the function in terms of which limit is to be applied and make it more simpler so that we can use the concept of limit as summation. After that we will get two integrals in numerator and denominator, we will solve them and then putting values back to fraction, we will fraction equal to 54 and solve the quadratic equation obtained to get values of a.
Complete step-by-step answer:
Let us see what the concept of limit as summation is.
Suppose we have to evaluate a limit question, say $\displaystyle \lim_{n \to \infty}f(n)$, if we can transform this limit into the form $\displaystyle \lim_{n \to \infty}\dfrac{1}{n}\sum\limits_{r=a}^{b}{f\left( \dfrac{r}{n} \right)}$, then $\displaystyle \lim_{n \to \infty}f(n)=\int\limits_{a}^{b}{f(x).dx}$.
Now, first let us simplify the value on which we have to apply the limit.
So, we have $\dfrac{1+\sqrt[3]{2}+\sqrt[3]{3}+........+\sqrt[3]{n}}{{{n}^{\dfrac{7}{3}}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}$.
Now, let us take \[{{n}^{\dfrac{1}{3}}}\] from denominator to numerator, which will give us \[{{n}^{-\dfrac{1}{3}}}\] in numerator.
So, we have $\dfrac{{{n}^{-\dfrac{1}{3}}}\left( 1+\sqrt[3]{2}+\sqrt[3]{3}+........+\sqrt[3]{n} \right)}{{{n}^{2}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}$
Or, $\dfrac{\sqrt[3]{\dfrac{1}{n}}\left( 1+\sqrt[3]{2}+\sqrt[3]{3}+........+\sqrt[3]{n} \right)}{{{n}^{2}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}$
Multiplying, $\sqrt[3]{\dfrac{1}{n}}$ with terms in bracket, we get
$\dfrac{\left( \sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}} \right)}{{{n}^{2}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}$
Multiplying, $\sqrt[3]{\dfrac{1}{n}}$ with terms in bracket in denominator, we get
$\dfrac{\left( \sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}} \right)}{\left( \dfrac{{{n}^{2}}}{{{(na+1)}^{2}}}+\dfrac{{{n}^{2}}}{{{(na+2)}^{2}}}+.....+\dfrac{{{n}^{2}}}{{{(na+n)}^{2}}} \right)}$
Now, in denominator, multiplying denominator and numerator of each terms by $\dfrac{1}{{{n}^{2}}}$, we have
$\dfrac{\left( \sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}} \right)}{\left( \dfrac{1}{{{\left( a+\dfrac{1}{n} \right)}^{2}}}+\dfrac{1}{{{\left( a+\dfrac{2}{n} \right)}^{2}}}+.....+\dfrac{1}{{{\left( a+\dfrac{n}{n} \right)}^{2}}} \right)}$
On observing patterns in numerator and denominator, we can write the terms collectively in terms of summation.
So, we can write numerator $\sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}}$ as \[\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}\] and,
Denominator $\dfrac{1}{{{\left( a+\dfrac{1}{n} \right)}^{2}}}+\dfrac{1}{{{\left( a+\dfrac{2}{n} \right)}^{2}}}+.....+\dfrac{1}{{{\left( a+\dfrac{n}{n} \right)}^{2}}}$ as $\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}$.
So, we have whole fraction $\dfrac{\left( \sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}} \right)}{\left( \dfrac{1}{{{\left( a+\dfrac{1}{n} \right)}^{2}}}+\dfrac{1}{{{\left( a+\dfrac{2}{n} \right)}^{2}}}+.....+\dfrac{1}{{{\left( a+\dfrac{n}{n} \right)}^{2}}} \right)}$ as $\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}$.
So, $\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}$
Now, let $\dfrac{r}{n}=x$
Here r is variable and n is constant
So, differentiating $\dfrac{r}{n}=x$ both side with respect to x, we get
$\dfrac{dr}{n}=dx$
Putting limit in $\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}$, we have
$\displaystyle \lim_{n \to \infty}\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}$
Now, value of $\dfrac{r}{n}=x$, at r = 1 and $n\to \infty $, we have x = 0 as $\dfrac{1}{\infty }\to 0$ and value of $\dfrac{r}{n}=x$, at r = n and $n\to \infty $, we have x = 1.
So, we can rewrite $\displaystyle \lim_{n \to \infty}\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}$ as \[\dfrac{\int\limits_{0}^{1}{\sqrt[3]{x}}dx}{\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}dx}\].
So, let ${{I}_{1}}=\int\limits_{0}^{1}{\sqrt[3]{x}}$ and ${{I}_{2}}=\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}$
We know that \[\int\limits_{a}^{b}{f(x)}=F(b)-F(a)\] and \[\int\limits_{{}}^{{}}{{{x}^{n}}.dx=\dfrac{{{x}^{n+1}}}{n+1}}+C\]
So, ${{I}_{1}}=\int\limits_{0}^{1}{\sqrt[3]{x}}$
${{I}_{1}}=\left( \dfrac{3}{4}{{x}^{\dfrac{4}{3}}} \right)_{0}^{1}$
${{I}_{1}}=\dfrac{3}{4}\left( 1-0 \right)$
So, ${{I}_{1}}=\dfrac{3}{4}$
Now, ${{I}_{2}}=\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}$
Let, a + x = t
At, x = 0, t = a and at x = 1, t = a + 1
Differentiating both sides, we get
dx = dt
so, ${{I}_{2}}=\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}$ is transformed to ${{I}_{2}}=\int\limits_{a}^{a+1}{\dfrac{1}{{{\left( t \right)}^{2}}}}dt$
${{I}_{2}}=\left( -\dfrac{1}{t} \right)_{a}^{a+1}$
${{I}_{2}}=\left( \dfrac{1}{a}-\dfrac{1}{a+1} \right)$
Putting back value of both integral in \[\dfrac{\int\limits_{0}^{1}{\sqrt[3]{x}}dx}{\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}dx}=54\],
We get, \[\dfrac{\dfrac{3}{4}}{\left( \dfrac{1}{a}-\dfrac{1}{a+1} \right)}=54\]
On simplifying, we get
\[\dfrac{1}{72}=\left( \dfrac{1}{a}-\dfrac{1}{a+1} \right)\]
On solving, we get
${{a}^{2}}+a-72=0$
On factorising, we get
${{a}^{2}}+9a-8a-72=0$
On simplifying, we get
( a + 9 )( a – 8 ) = 0
Or, a = -9, 8
So, the correct answers are “Option a and b”.
Note: To solve such a question must know the concept of limit as summation and also, one should not put limit directly as it will give nothing so one must proceed ahead by simplifying the brackets and then use limit as summation to easily simplify the question. Always remember that \[\int\limits_{a}^{b}{f(x)}=F(b)-F(a)\] and \[\int\limits_{{}}^{{}}{{{x}^{n}}.dx=\dfrac{{{x}^{n+1}}}{n+1}}+C\] Try not to make any calculation error as this will make question more complex and hard to solve.
Complete step-by-step answer:
Let us see what the concept of limit as summation is.
Suppose we have to evaluate a limit question, say $\displaystyle \lim_{n \to \infty}f(n)$, if we can transform this limit into the form $\displaystyle \lim_{n \to \infty}\dfrac{1}{n}\sum\limits_{r=a}^{b}{f\left( \dfrac{r}{n} \right)}$, then $\displaystyle \lim_{n \to \infty}f(n)=\int\limits_{a}^{b}{f(x).dx}$.
Now, first let us simplify the value on which we have to apply the limit.
So, we have $\dfrac{1+\sqrt[3]{2}+\sqrt[3]{3}+........+\sqrt[3]{n}}{{{n}^{\dfrac{7}{3}}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}$.
Now, let us take \[{{n}^{\dfrac{1}{3}}}\] from denominator to numerator, which will give us \[{{n}^{-\dfrac{1}{3}}}\] in numerator.
So, we have $\dfrac{{{n}^{-\dfrac{1}{3}}}\left( 1+\sqrt[3]{2}+\sqrt[3]{3}+........+\sqrt[3]{n} \right)}{{{n}^{2}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}$
Or, $\dfrac{\sqrt[3]{\dfrac{1}{n}}\left( 1+\sqrt[3]{2}+\sqrt[3]{3}+........+\sqrt[3]{n} \right)}{{{n}^{2}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}$
Multiplying, $\sqrt[3]{\dfrac{1}{n}}$ with terms in bracket, we get
$\dfrac{\left( \sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}} \right)}{{{n}^{2}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}$
Multiplying, $\sqrt[3]{\dfrac{1}{n}}$ with terms in bracket in denominator, we get
$\dfrac{\left( \sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}} \right)}{\left( \dfrac{{{n}^{2}}}{{{(na+1)}^{2}}}+\dfrac{{{n}^{2}}}{{{(na+2)}^{2}}}+.....+\dfrac{{{n}^{2}}}{{{(na+n)}^{2}}} \right)}$
Now, in denominator, multiplying denominator and numerator of each terms by $\dfrac{1}{{{n}^{2}}}$, we have
$\dfrac{\left( \sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}} \right)}{\left( \dfrac{1}{{{\left( a+\dfrac{1}{n} \right)}^{2}}}+\dfrac{1}{{{\left( a+\dfrac{2}{n} \right)}^{2}}}+.....+\dfrac{1}{{{\left( a+\dfrac{n}{n} \right)}^{2}}} \right)}$
On observing patterns in numerator and denominator, we can write the terms collectively in terms of summation.
So, we can write numerator $\sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}}$ as \[\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}\] and,
Denominator $\dfrac{1}{{{\left( a+\dfrac{1}{n} \right)}^{2}}}+\dfrac{1}{{{\left( a+\dfrac{2}{n} \right)}^{2}}}+.....+\dfrac{1}{{{\left( a+\dfrac{n}{n} \right)}^{2}}}$ as $\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}$.
So, we have whole fraction $\dfrac{\left( \sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}} \right)}{\left( \dfrac{1}{{{\left( a+\dfrac{1}{n} \right)}^{2}}}+\dfrac{1}{{{\left( a+\dfrac{2}{n} \right)}^{2}}}+.....+\dfrac{1}{{{\left( a+\dfrac{n}{n} \right)}^{2}}} \right)}$ as $\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}$.
So, $\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}$
Now, let $\dfrac{r}{n}=x$
Here r is variable and n is constant
So, differentiating $\dfrac{r}{n}=x$ both side with respect to x, we get
$\dfrac{dr}{n}=dx$
Putting limit in $\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}$, we have
$\displaystyle \lim_{n \to \infty}\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}$
Now, value of $\dfrac{r}{n}=x$, at r = 1 and $n\to \infty $, we have x = 0 as $\dfrac{1}{\infty }\to 0$ and value of $\dfrac{r}{n}=x$, at r = n and $n\to \infty $, we have x = 1.
So, we can rewrite $\displaystyle \lim_{n \to \infty}\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}$ as \[\dfrac{\int\limits_{0}^{1}{\sqrt[3]{x}}dx}{\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}dx}\].
So, let ${{I}_{1}}=\int\limits_{0}^{1}{\sqrt[3]{x}}$ and ${{I}_{2}}=\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}$
We know that \[\int\limits_{a}^{b}{f(x)}=F(b)-F(a)\] and \[\int\limits_{{}}^{{}}{{{x}^{n}}.dx=\dfrac{{{x}^{n+1}}}{n+1}}+C\]
So, ${{I}_{1}}=\int\limits_{0}^{1}{\sqrt[3]{x}}$
${{I}_{1}}=\left( \dfrac{3}{4}{{x}^{\dfrac{4}{3}}} \right)_{0}^{1}$
${{I}_{1}}=\dfrac{3}{4}\left( 1-0 \right)$
So, ${{I}_{1}}=\dfrac{3}{4}$
Now, ${{I}_{2}}=\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}$
Let, a + x = t
At, x = 0, t = a and at x = 1, t = a + 1
Differentiating both sides, we get
dx = dt
so, ${{I}_{2}}=\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}$ is transformed to ${{I}_{2}}=\int\limits_{a}^{a+1}{\dfrac{1}{{{\left( t \right)}^{2}}}}dt$
${{I}_{2}}=\left( -\dfrac{1}{t} \right)_{a}^{a+1}$
${{I}_{2}}=\left( \dfrac{1}{a}-\dfrac{1}{a+1} \right)$
Putting back value of both integral in \[\dfrac{\int\limits_{0}^{1}{\sqrt[3]{x}}dx}{\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}dx}=54\],
We get, \[\dfrac{\dfrac{3}{4}}{\left( \dfrac{1}{a}-\dfrac{1}{a+1} \right)}=54\]
On simplifying, we get
\[\dfrac{1}{72}=\left( \dfrac{1}{a}-\dfrac{1}{a+1} \right)\]
On solving, we get
${{a}^{2}}+a-72=0$
On factorising, we get
${{a}^{2}}+9a-8a-72=0$
On simplifying, we get
( a + 9 )( a – 8 ) = 0
Or, a = -9, 8
So, the correct answers are “Option a and b”.
Note: To solve such a question must know the concept of limit as summation and also, one should not put limit directly as it will give nothing so one must proceed ahead by simplifying the brackets and then use limit as summation to easily simplify the question. Always remember that \[\int\limits_{a}^{b}{f(x)}=F(b)-F(a)\] and \[\int\limits_{{}}^{{}}{{{x}^{n}}.dx=\dfrac{{{x}^{n+1}}}{n+1}}+C\] Try not to make any calculation error as this will make question more complex and hard to solve.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

