
Four condensers having capacities $2pF$, $3pF$,$4pF$and $6pF$are connected in series. The equivalent capacitance of the combination is
(A) $8pF$
(B) $0.8pF$
(C) $1.8pF$
(D) $0.4pF$
Answer
135.6k+ views
Hint: We will be using the concept that when the same potential difference is applied across capacitors which are connected in series, then each capacitor has the same charge and the applied potential is equal to the sum of potential differences on each capacitor.
Formula Used: $V = Q/C$
Complete step by step answer
let us say potential difference across $2pF$be ${V_1}$
potential difference across $3pF$ be ${V_2}$
potential difference across $4pF$ be ${V_3}$
potential difference across $6pF$ be ${V_4}$
we know that $V = \dfrac{q}{C}$, where q is the charge and C is the capacitance
total potential V is sum of all these four potentials $V = {V_1} + {V_2} + {V_3} + {V_4}$
\[ \Rightarrow V = q\left( {\dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + \dfrac{1}{{{C_4}}}} \right)\]
\[ \Rightarrow \dfrac{q}{V} = \left( {\dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + \dfrac{1}{{{C_4}}}} \right) \Rightarrow 1/{C_{eq}} = \left( {\dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + \dfrac{1}{{{C_4}}}} \right)\]
On substituting the values of different capacitance,
\[\dfrac{1}{{{C_{eq}}}} = \left( {\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dfrac{1}{6}} \right)\]
\[ \Rightarrow {C_{eq}} = 0.8pF\]
The equivalent capacitance of the combination is \[0.8pF\]
Correct answer is B. \[0.8pF\]
Additional information
Capacitor is nothing but a pair of two conductors which can be of any shape are close to each other and have opposite charges.Capacitance is the ratio of charge on a capacitor plate to the potential difference between the plates. Capacitance and charge are proportional that is more the charge, greater is the capacitance.
Note
There are few points to consider about capacitors in series like we need to observe the charge shifting from one to other capacitor in a series combination, it can move in one direction only, if not then there is no series combination. Another point is the battery attached in the circuit can produce charge on only that capacitor which is connected directly with the battery. Charges on other capacitors are due to shifting of present charge. The charge can only be redistributed.
Formula Used: $V = Q/C$
Complete step by step answer
let us say potential difference across $2pF$be ${V_1}$
potential difference across $3pF$ be ${V_2}$
potential difference across $4pF$ be ${V_3}$
potential difference across $6pF$ be ${V_4}$
we know that $V = \dfrac{q}{C}$, where q is the charge and C is the capacitance
total potential V is sum of all these four potentials $V = {V_1} + {V_2} + {V_3} + {V_4}$
\[ \Rightarrow V = q\left( {\dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + \dfrac{1}{{{C_4}}}} \right)\]
\[ \Rightarrow \dfrac{q}{V} = \left( {\dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + \dfrac{1}{{{C_4}}}} \right) \Rightarrow 1/{C_{eq}} = \left( {\dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + \dfrac{1}{{{C_4}}}} \right)\]
On substituting the values of different capacitance,
\[\dfrac{1}{{{C_{eq}}}} = \left( {\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dfrac{1}{6}} \right)\]
\[ \Rightarrow {C_{eq}} = 0.8pF\]
The equivalent capacitance of the combination is \[0.8pF\]
Correct answer is B. \[0.8pF\]
Additional information
Capacitor is nothing but a pair of two conductors which can be of any shape are close to each other and have opposite charges.Capacitance is the ratio of charge on a capacitor plate to the potential difference between the plates. Capacitance and charge are proportional that is more the charge, greater is the capacitance.
Note
There are few points to consider about capacitors in series like we need to observe the charge shifting from one to other capacitor in a series combination, it can move in one direction only, if not then there is no series combination. Another point is the battery attached in the circuit can produce charge on only that capacitor which is connected directly with the battery. Charges on other capacitors are due to shifting of present charge. The charge can only be redistributed.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Displacement-Time Graph and Velocity-Time Graph for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

JEE Main Chemistry Question Paper with Answer Keys and Solutions
