
Four particles of equal mass ${{M}}$ moves along a circle of radius ${{R}}$ under the action of their mutual gravitational attraction. Find the speed of each particle.
Answer
233.1k+ views
Hint: First of all, write the given quantities. Here, the required centripetal force in order to move the respective masses is provided by the mutual gravitational attraction. So, equate the centripetal force with Newton’s universal law of gravitation i.e. ${{F = }}\dfrac{{{{G}}{{{m}}_1}{{{m}}_2}}}{{{{{R}}^{{2}}}}}$ where ${{{m}}_{{1}}}{{ = }}$ mass of the first body, ${{{m}}_{{2}}}{{ = }}$ mass of the second body, ${{R = }}$ distance between the two bodies and ${{G = }}$ universal gravitational constant.
Complete step by step solution:
Given: Four particles having mass ${{M}}$each moves along a circular track having radius ${{R}}$
To find: The speed of each particle
Let us name all the particles in such a way shown in figure below (particle 1, particle 2, particle 3 and particle 4)

When two particles having mass ${{M}}$ and ${{m}}$. The distance between both the particles is ${{R}}$. Then the force of attraction is given by the formula
${{F = }}\dfrac{{{{G}}{{{m}}_{{1}}}{{{m}}_{{2}}}}}{{{{{R}}^{{2}}}}}...{{(i)}}$
Force of attraction between particle 1 and particle 4 is given by using relation (i),
$\Rightarrow {{{F}}_{{{14}}}}{{ = }}\dfrac{{{{G}}{{{M}}^2}}}{{{{2}}{{{R}}^{{2}}}}}$
Since the distance between the particle 1 and particle 4 is ${{R + R = 2R}}$
And the mass of particle 1 and particle 4 is ${{M}}$
Force of attraction between particle 1 and particle 2 is given by using relation (i),
$\Rightarrow {{{F}}_{{{12}}}}{{ = }}\dfrac{{{{G}}{{{M}}^2}}}{{{{2}}{{{R}}^{{2}}}}}$
Since the distance between the particle 1 and particle 2 is ${{R + R = 2R}}$
And the mass of particle 1 and particle 2 is ${{M}}$
Now resultant of these two forces i.e. ${{{F}}_{{{14}}}}$ and ${{{F}}_{{{12}}}}$ is $\dfrac{{\sqrt {{2}} {{GM}}}}{{{{4}}{{{R}}^{{2}}}}}$.
Force of attraction between particle 1 and particle 3 is given by using relation (i),
$\Rightarrow {{{F}}_{{{13}}}}{{ = }}\dfrac{{{{G}}{{{M}}^2}}}{{{{2}}{{{R}}^{{2}}}}}$
Since the distance between the particle 1 and particle 3 is ${{R + R = 2R}}$
And the mass of particle 1 and particle 3 is ${{M}}$
Net force is given by
$\Rightarrow {{{F}}_{{{net}}}}{{ = }}\dfrac{{\sqrt {{2}} {{G}}{{{M}}^{{2}}}}}{{{{2}}{{{R}}^{{2}}}}}{{ + }}\dfrac{{{{G}}{{{M}}^{{2}}}}}{{{{4}}{{{R}}^{{2}}}}}$
Centripetal force, ${{{F}}_{{C}}}{{ = }}\dfrac{{{{M}}{{{v}}^{{2}}}}}{{{R}}}$
The required centripetal force in order to move the respective masses is provided by the mutual gravitational attraction.
Now equating centripetal force with net force, we get
$\Rightarrow \dfrac{{{{M}}{{{v}}^{{2}}}}}{{{R}}}{{ = }}\dfrac{{\sqrt {{2}} {{G}}{{{M}}^{{2}}}}}{{{{2}}{{{R}}^{{2}}}}}{{ + }}\dfrac{{{{G}}{{{M}}^{{2}}}}}{{{{4}}{{{R}}^{{2}}}}}$
On further solving, we get
$
\Rightarrow \dfrac{{{{{v}}^{{2}}}}}{1}{{ = }}\dfrac{{{{GM}}}}{{{R}}}{{ }}\left( {\dfrac{{2\sqrt 2 + 1}}{4}} \right) \\
\therefore {{v = }}\sqrt {\dfrac{{{{GM}}}}{{{R}}}{{ }}\left( {\dfrac{{{{2}}\sqrt {{2}} {{ + 1}}}}{{{4}}}} \right)} $
Thus, the speed of each particle will be ${{ }}\sqrt {\dfrac{{{{GM}}}}{{{R}}}{{ }}\left( {\dfrac{{{{2}}\sqrt {{2}} {{ + 1}}}}{{{4}}}} \right)}$.
Note: Centripetal force is a force that makes an object or a body to move in a curved path. The direction to the motion of the body is always orthogonal towards a fixed point. According to Newton, centripetal force is a force according to which bodies are drawn towards a point to a centre.
Complete step by step solution:
Given: Four particles having mass ${{M}}$each moves along a circular track having radius ${{R}}$
To find: The speed of each particle
Let us name all the particles in such a way shown in figure below (particle 1, particle 2, particle 3 and particle 4)

When two particles having mass ${{M}}$ and ${{m}}$. The distance between both the particles is ${{R}}$. Then the force of attraction is given by the formula
${{F = }}\dfrac{{{{G}}{{{m}}_{{1}}}{{{m}}_{{2}}}}}{{{{{R}}^{{2}}}}}...{{(i)}}$
Force of attraction between particle 1 and particle 4 is given by using relation (i),
$\Rightarrow {{{F}}_{{{14}}}}{{ = }}\dfrac{{{{G}}{{{M}}^2}}}{{{{2}}{{{R}}^{{2}}}}}$
Since the distance between the particle 1 and particle 4 is ${{R + R = 2R}}$
And the mass of particle 1 and particle 4 is ${{M}}$
Force of attraction between particle 1 and particle 2 is given by using relation (i),
$\Rightarrow {{{F}}_{{{12}}}}{{ = }}\dfrac{{{{G}}{{{M}}^2}}}{{{{2}}{{{R}}^{{2}}}}}$
Since the distance between the particle 1 and particle 2 is ${{R + R = 2R}}$
And the mass of particle 1 and particle 2 is ${{M}}$
Now resultant of these two forces i.e. ${{{F}}_{{{14}}}}$ and ${{{F}}_{{{12}}}}$ is $\dfrac{{\sqrt {{2}} {{GM}}}}{{{{4}}{{{R}}^{{2}}}}}$.
Force of attraction between particle 1 and particle 3 is given by using relation (i),
$\Rightarrow {{{F}}_{{{13}}}}{{ = }}\dfrac{{{{G}}{{{M}}^2}}}{{{{2}}{{{R}}^{{2}}}}}$
Since the distance between the particle 1 and particle 3 is ${{R + R = 2R}}$
And the mass of particle 1 and particle 3 is ${{M}}$
Net force is given by
$\Rightarrow {{{F}}_{{{net}}}}{{ = }}\dfrac{{\sqrt {{2}} {{G}}{{{M}}^{{2}}}}}{{{{2}}{{{R}}^{{2}}}}}{{ + }}\dfrac{{{{G}}{{{M}}^{{2}}}}}{{{{4}}{{{R}}^{{2}}}}}$
Centripetal force, ${{{F}}_{{C}}}{{ = }}\dfrac{{{{M}}{{{v}}^{{2}}}}}{{{R}}}$
The required centripetal force in order to move the respective masses is provided by the mutual gravitational attraction.
Now equating centripetal force with net force, we get
$\Rightarrow \dfrac{{{{M}}{{{v}}^{{2}}}}}{{{R}}}{{ = }}\dfrac{{\sqrt {{2}} {{G}}{{{M}}^{{2}}}}}{{{{2}}{{{R}}^{{2}}}}}{{ + }}\dfrac{{{{G}}{{{M}}^{{2}}}}}{{{{4}}{{{R}}^{{2}}}}}$
On further solving, we get
$
\Rightarrow \dfrac{{{{{v}}^{{2}}}}}{1}{{ = }}\dfrac{{{{GM}}}}{{{R}}}{{ }}\left( {\dfrac{{2\sqrt 2 + 1}}{4}} \right) \\
\therefore {{v = }}\sqrt {\dfrac{{{{GM}}}}{{{R}}}{{ }}\left( {\dfrac{{{{2}}\sqrt {{2}} {{ + 1}}}}{{{4}}}} \right)} $
Thus, the speed of each particle will be ${{ }}\sqrt {\dfrac{{{{GM}}}}{{{R}}}{{ }}\left( {\dfrac{{{{2}}\sqrt {{2}} {{ + 1}}}}{{{4}}}} \right)}$.
Note: Centripetal force is a force that makes an object or a body to move in a curved path. The direction to the motion of the body is always orthogonal towards a fixed point. According to Newton, centripetal force is a force according to which bodies are drawn towards a point to a centre.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

