
Half mole of an ideal mono-atomic gas is heated at constant pressure of $1\,atm$ from $20^\circ C$ to $90^\circ C$. Work done by gas is close to: (Gas constant $R = 8.31J/mol.K$ )
A) $73J$
B) $291J$
C) $581J$
D) $146J$
Answer
133.8k+ views
Hint: We are given that the gas used is ideal gas. Use the principles and concepts of ideal gas in the solution and transform the usual formula of work done by a gas such that it coincides with the values we are provided with.
Formula Used:
Work Done by a gas, $WD = P\Delta V$
Where, $P$ is the pressure during the reaction and $\Delta V$ is the change in volume of the gas during the reaction
For an ideal gas, $P\Delta V = nR\Delta T$
Where, $P$ is the pressure during the reaction, $\Delta V$ is the change in volume of the gas during the reaction, $n$ is the number of moles of the gas, $R$ is the Gas Constant (value given in question), $\Delta T$ is the change in temperature of the gas during the reaction
Complete Step by Step Solution:
We are given that during the reaction half mole of the gas is used, the pressure is $1\,atm$ , and the temperature changes from $20^\circ C$ to $90^\circ C$. Now, we know that work done by a gas, $WD = P\Delta V$.
Also, the gas used is ideal. We know that in the case of an ideal gas, $P\Delta V = nR\Delta T$
Hence, we conclude that $WD = nR\Delta T$
On putting the respective values, we get $WD = 0.5 \times 8.31 \times (90 - 20)$
Simplifying, $WD = 0.5 \times 8.31 \times 70$
$WD = 0.5 \times 581.7 = 290.85 \simeq 291J$
Hence, option B is the correct answer.
Note: Do not forget to check the number of moles in the question. Like in this question, we are given that half mole of the gas has been used. We often ignore this and end up solving the question with one mole which makes our answer incorrect. Questions like these mostly have an option with the answer that you would have got if the number of moles was one (like in this question option C). Pay attention to the given values.
Formula Used:
Work Done by a gas, $WD = P\Delta V$
Where, $P$ is the pressure during the reaction and $\Delta V$ is the change in volume of the gas during the reaction
For an ideal gas, $P\Delta V = nR\Delta T$
Where, $P$ is the pressure during the reaction, $\Delta V$ is the change in volume of the gas during the reaction, $n$ is the number of moles of the gas, $R$ is the Gas Constant (value given in question), $\Delta T$ is the change in temperature of the gas during the reaction
Complete Step by Step Solution:
We are given that during the reaction half mole of the gas is used, the pressure is $1\,atm$ , and the temperature changes from $20^\circ C$ to $90^\circ C$. Now, we know that work done by a gas, $WD = P\Delta V$.
Also, the gas used is ideal. We know that in the case of an ideal gas, $P\Delta V = nR\Delta T$
Hence, we conclude that $WD = nR\Delta T$
On putting the respective values, we get $WD = 0.5 \times 8.31 \times (90 - 20)$
Simplifying, $WD = 0.5 \times 8.31 \times 70$
$WD = 0.5 \times 581.7 = 290.85 \simeq 291J$
Hence, option B is the correct answer.
Note: Do not forget to check the number of moles in the question. Like in this question, we are given that half mole of the gas has been used. We often ignore this and end up solving the question with one mole which makes our answer incorrect. Questions like these mostly have an option with the answer that you would have got if the number of moles was one (like in this question option C). Pay attention to the given values.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
