Icicles. Liquid water coats an active (growing) icicle and extends up a short, narrow tube along the central axis. Because the water ice interface must have a temperature of ${0^ \circ }\,C $, the water in the tube cannot lose energy through the sides of the icicle or down through the tip because there are no temperature changes in those directions. It can lose energy and freeze only by sending energy up through distance $L $ to the top of the icicle, where the temperature ${T_r} $ can be below ${0^ \circ }\,C $. Take $L = 0.12\,m $ and ${T_r} = - {5^ \circ }\,C $. Assume that the central tube and the upward conduction path both have cross sectional area $A $. In terms of $A $, what rate is mass converted from liquid to ice at the top of the central tube?
Answer
Verified
123k+ views
Hint The rate of the mass converted from liquid to the ice at the top of the central tube can be determined by using the heat of fusion formula and this formula is differentiated with respect to the time, then the rate of the mass converted from liquid to ice can be determined.
Useful formula
The heat of the fusion can be given by,
$Q = {L_F}m $
Where, $Q $ is the heat of the fusion, ${L_F} $ is the constant and $m $ is the mass.
Complete step by step answer
Given that,
The length of the tube is, $L = 0.12\,m $,
The temperature of the liquid is, ${T_r} = - {5^ \circ }\,C $.
Now,
The heat of the fusion can be given by,
$Q = {L_F}m $
By differentiating the above equation with respect to the time, then the above equation is written as,
$\dfrac{{dQ}}{{dt}} = {L_F}\dfrac{{dm}}{{dt}} $
The above equation is also written as,
${P_{cond}} = \dfrac{{dQ}}{{dt}} = {L_F}\dfrac{{dm}}{{dt}} $
By rearranging the terms in the above equation, then the above equation is written as,
$\dfrac{{{P_{cond}}}}{{{L_F}}} = \dfrac{{dm}}{{dt}} $
The value of the ${P_{cond}} = 16.7\,AW $ and the value of the ${L_F} = 3.33 \times {10^5}\,Jk{g^{ - 1}} $.
By substituting the both values in the above equation, then the above equation is written as,
$\dfrac{{dm}}{{dt}} = \dfrac{{16.7\,AW}}{{3.33 \times {{10}^5}\,Jk{g^{ - 1}}}} $
By dividing the terms in the above equation, then the above equation is written as,
$\dfrac{{dm}}{{dt}} = 5.02 \times {10^{ - 5}}\,kg{s^{ - 1}} $
Thus, the above equation shows the rate is mass converted from liquid to ice at the top of the central tube.
Note The rate of the mass of the liquid converted to the ice is directly proportional to the ${P_{cond}} $ and the rate of the mass of the liquid converted to the ice is inversely proportional to the ${L_F} $. As the ${P_{cond}} $ increases, the rate of the mass of the liquid converted to the ice also increases.
Useful formula
The heat of the fusion can be given by,
$Q = {L_F}m $
Where, $Q $ is the heat of the fusion, ${L_F} $ is the constant and $m $ is the mass.
Complete step by step answer
Given that,
The length of the tube is, $L = 0.12\,m $,
The temperature of the liquid is, ${T_r} = - {5^ \circ }\,C $.
Now,
The heat of the fusion can be given by,
$Q = {L_F}m $
By differentiating the above equation with respect to the time, then the above equation is written as,
$\dfrac{{dQ}}{{dt}} = {L_F}\dfrac{{dm}}{{dt}} $
The above equation is also written as,
${P_{cond}} = \dfrac{{dQ}}{{dt}} = {L_F}\dfrac{{dm}}{{dt}} $
By rearranging the terms in the above equation, then the above equation is written as,
$\dfrac{{{P_{cond}}}}{{{L_F}}} = \dfrac{{dm}}{{dt}} $
The value of the ${P_{cond}} = 16.7\,AW $ and the value of the ${L_F} = 3.33 \times {10^5}\,Jk{g^{ - 1}} $.
By substituting the both values in the above equation, then the above equation is written as,
$\dfrac{{dm}}{{dt}} = \dfrac{{16.7\,AW}}{{3.33 \times {{10}^5}\,Jk{g^{ - 1}}}} $
By dividing the terms in the above equation, then the above equation is written as,
$\dfrac{{dm}}{{dt}} = 5.02 \times {10^{ - 5}}\,kg{s^{ - 1}} $
Thus, the above equation shows the rate is mass converted from liquid to ice at the top of the central tube.
Note The rate of the mass of the liquid converted to the ice is directly proportional to the ${P_{cond}} $ and the rate of the mass of the liquid converted to the ice is inversely proportional to the ${L_F} $. As the ${P_{cond}} $ increases, the rate of the mass of the liquid converted to the ice also increases.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line