Answer
Verified
110.4k+ views
Hint: For solving this problem, first we solve the inner cross product of the three involved for non-coplanar vectors. Now, expanding the dot product of the given expression, we obtain a simplified result in the scalar triple product of vectors.
Complete step-by-step solution -
Vectors are represented by directed line segments such that the length of the line segment is the magnitude of the vector and direction of the arrow marked is the direction of the vector. Three vectors are said to be non-coplanar, if their support lines are not parallel to the same plane or they cannot be expressed as $\overrightarrow{R}=x\overrightarrow{A}+y\overrightarrow{B}+z\overrightarrow{C}$.
According to the problem statement, we are given $\left( A+B+C \right)\cdot \left[ \left( A+B \right)\times \left( A+C \right) \right]$
Now, first expanding the cross product of the expression, we get
$\left( A+B+C \right)\cdot \left[ A\times A+A\times C+B\times A+B\times C \right]$
By using the identity $A\times A=0$, we simplify the expression as
$\left( A+B+C \right)\cdot \left[ A\times C+B\times A+B\times C \right]$
Now, on expanding the dot product and by using the identity that scalar triple product involving two similar vectors is zero, we get
\[\begin{align}
& A\cdot \left( A\times C \right)+A\cdot \left( B\times A \right)+A\cdot \left( B\times C \right)+B\cdot \left( A\times C \right)+B\cdot \left( B\times A \right)+B\cdot \left( B\times C \right)+C\cdot \left( A\times C \right) \\
& +C\cdot \left( B\times A \right)+C\cdot \left( B\times C \right) \\
& \Rightarrow C\cdot \left( B\times A \right)+B\cdot \left( A\times C \right)+A\cdot \left( B\times C \right) \\
\end{align}\]
Now, by using the property $C\cdot \left( B\times A \right)=-\left[ A,B,C \right],B\cdot \left( A\times C \right)=-\left[ A,B,C \right]\text{ and}\,A.\left( B\times C \right)=\left[ A,B,C \right]$, we get
\[\begin{align}
& \Rightarrow -\left[ A,B,C \right]-\left[ A,B,C \right]+\left[ A,B,C \right] \\
& \Rightarrow -\left[ A,B,C \right] \\
\end{align}\]
Therefore option (d) is correct.
Note: The key concept involved in solving this problem is the knowledge of scalar triple product of non-collinear vectors. Students must remember that the vectors are non collinear so their scalar triple product cannot be zero. Also, the negative sign due to clockwise rotation of vectors must be taken into account.
Complete step-by-step solution -
Vectors are represented by directed line segments such that the length of the line segment is the magnitude of the vector and direction of the arrow marked is the direction of the vector. Three vectors are said to be non-coplanar, if their support lines are not parallel to the same plane or they cannot be expressed as $\overrightarrow{R}=x\overrightarrow{A}+y\overrightarrow{B}+z\overrightarrow{C}$.
According to the problem statement, we are given $\left( A+B+C \right)\cdot \left[ \left( A+B \right)\times \left( A+C \right) \right]$
Now, first expanding the cross product of the expression, we get
$\left( A+B+C \right)\cdot \left[ A\times A+A\times C+B\times A+B\times C \right]$
By using the identity $A\times A=0$, we simplify the expression as
$\left( A+B+C \right)\cdot \left[ A\times C+B\times A+B\times C \right]$
Now, on expanding the dot product and by using the identity that scalar triple product involving two similar vectors is zero, we get
\[\begin{align}
& A\cdot \left( A\times C \right)+A\cdot \left( B\times A \right)+A\cdot \left( B\times C \right)+B\cdot \left( A\times C \right)+B\cdot \left( B\times A \right)+B\cdot \left( B\times C \right)+C\cdot \left( A\times C \right) \\
& +C\cdot \left( B\times A \right)+C\cdot \left( B\times C \right) \\
& \Rightarrow C\cdot \left( B\times A \right)+B\cdot \left( A\times C \right)+A\cdot \left( B\times C \right) \\
\end{align}\]
Now, by using the property $C\cdot \left( B\times A \right)=-\left[ A,B,C \right],B\cdot \left( A\times C \right)=-\left[ A,B,C \right]\text{ and}\,A.\left( B\times C \right)=\left[ A,B,C \right]$, we get
\[\begin{align}
& \Rightarrow -\left[ A,B,C \right]-\left[ A,B,C \right]+\left[ A,B,C \right] \\
& \Rightarrow -\left[ A,B,C \right] \\
\end{align}\]
Therefore option (d) is correct.
Note: The key concept involved in solving this problem is the knowledge of scalar triple product of non-collinear vectors. Students must remember that the vectors are non collinear so their scalar triple product cannot be zero. Also, the negative sign due to clockwise rotation of vectors must be taken into account.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main