Answer
Verified
110.7k+ views
Hint: It must be remembered that \[\dfrac{d}{{dx}}\left( {{a^x}} \right) = {a^x} \times \ln (a)\] and also how we do a derivative when u and v both are functions in x and they both are multiplied. Thus, \[\dfrac{d}{{dx}}\left( {u \times v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] .
Complete step-by-step answer:
As we know previously that \[\dfrac{d}{{dx}}\left( {u \times v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] So here we will consider \[u = {5^x}\& v = {x^5}\]
So now it becomes
\[\begin{array}{l}
\therefore y = {5^x}{x^5}\\
\Rightarrow \dfrac{{dy}}{{dx}} = {5^x}\dfrac{d}{{dx}}{x^5} + {x^5}\dfrac{d}{{dx}}{5^x}\\
\Rightarrow \dfrac{{dy}}{{dx}} = {5^x} \times 5{x^4} + {x^5} \times {5^x} \times \log (5)
\end{array}\]
This is because \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\& \dfrac{d}{{dx}}\left( {{a^x}} \right) = {a^x} \times \ln (a)\]
So now, further solving it, we are getting
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {5^x}\left( {{x^5}\log 5 + 5{x^4}} \right)\]
Which means that option D is the correct option here.
Note: A lot of students will take log on both sides as their very preliminary stage but that is not necessary and it will only just complicate things, yes we take logarithms on both sides to bring the power to bases and we are also aware of the fact that derivative of logarithmic y will be the inverse of y. But Using that here will Stretch the solution far more lengthier and thus chances of making silly mistakes will also be higher.
Complete step-by-step answer:
As we know previously that \[\dfrac{d}{{dx}}\left( {u \times v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] So here we will consider \[u = {5^x}\& v = {x^5}\]
So now it becomes
\[\begin{array}{l}
\therefore y = {5^x}{x^5}\\
\Rightarrow \dfrac{{dy}}{{dx}} = {5^x}\dfrac{d}{{dx}}{x^5} + {x^5}\dfrac{d}{{dx}}{5^x}\\
\Rightarrow \dfrac{{dy}}{{dx}} = {5^x} \times 5{x^4} + {x^5} \times {5^x} \times \log (5)
\end{array}\]
This is because \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\& \dfrac{d}{{dx}}\left( {{a^x}} \right) = {a^x} \times \ln (a)\]
So now, further solving it, we are getting
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {5^x}\left( {{x^5}\log 5 + 5{x^4}} \right)\]
Which means that option D is the correct option here.
Note: A lot of students will take log on both sides as their very preliminary stage but that is not necessary and it will only just complicate things, yes we take logarithms on both sides to bring the power to bases and we are also aware of the fact that derivative of logarithmic y will be the inverse of y. But Using that here will Stretch the solution far more lengthier and thus chances of making silly mistakes will also be higher.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main