Answer
Verified
110.4k+ views
$
{\text{Two matrix can be added if their order is same (ORDER: - no of rows}} \times {\text{no of columns)}}{\text{.}} \\
{\text{so from the equation 2A + 3X = 5B we can say that order of matrices A,B,X is same }}\left( {{\text{because two matrices can be added only if their order is same}}} \right). \\
{\text{So the given equation is 2A + 3X = 5B}}{\text{.}} \\
{\text{Let X be a matrix with elements}}\left[ \begin{subarray}{l}
{\text{a d}} \\
{\text{b e}} \\
{\text{c f}}
\end{subarray} \right] \\
2\left[ \begin{subarray}{l}
2\,\,\,\,\,\,\,\,\, - 2 \\
4\,\,\,\,\,\,\,\,\,\,\,\,\,2 \\
- 5\,\,\,\,\,\,\,\,\,\,1
\end{subarray} \right] + 3\left[ \begin{subarray}{l}
{\text{a d}} \\
{\text{b e}} \\
{\text{c f}}
\end{subarray} \right] = 5\left[ \begin{subarray}{l}
8\,\,\,\,\,\,\,\,\,\,\,\,0 \\
4\,\,\,\,\,\,\,\, - 2 \\
3\,\,\,\,\,\,\,\,\,\,\,\,6
\end{subarray} \right] \\
{\text{now we know that corresponding elements of two equal matrices are equal}} \\
{\text{solving the equation }}\left[ \begin{subarray}{l}
2 \times 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 \times ( - 2) \\
2 \times 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 \times 2 \\
2 \times ( - 5)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 \times 1
\end{subarray} \right] + \left[ \begin{subarray}{l}
3 \times {\text{a 3}} \times {\text{d}} \\
{\text{3}} \times {\text{b 3}} \times {\text{e}} \\
{\text{3}} \times {\text{c 3}} \times {\text{f}}
\end{subarray} \right] = \left[ \begin{subarray}{l}
5 \times 8\,\,\,\,\,\,\,\,\,5 \times 0\, \\
5 \times 4\,\,\,\,\,\,\,\,\,5 \times \left( { - 2} \right) \\
5 \times 3\,\,\,\,\,\,\,\,\,5 \times 6
\end{subarray} \right],{\text{ (When you multiply any general matrix i}}{\text{.e A = }}\left[ \begin{subarray}{l}
{\text{a c}} \\
{\text{b d}}
\end{subarray} \right]{\text{by a scalar k;kA = }}\left[ \begin{subarray}{l}
{\text{ka kc}} \\
{\text{kb kd}}
\end{subarray} \right]) \\
\left[ \begin{subarray}{l}
4 + {\text{3a - 4 + 3d}} \\
{\text{8 + 3b 4 + 3e}} \\
{\text{ - 10 + 3c 2 + 3f}}
\end{subarray} \right] = \,\left[ \begin{subarray}{l}
40\,\,\,\,\,\,\,\,\,\,\,\,0 \\
20\,\,\,\,\,\,\,\,\,\, - 10 \\
15\,\,\,\,\,\,\,\,\,\,\,\,\,\,18
\end{subarray} \right] \\
{\text{now compare the corresponding elements of the matrices as they are equal and (find out values of a,b,c,d,e,f)}} \\
{\text{4 + 3a = 40, 8 + 3b = 20, - 10 + 3c = 15, - 4 + 3d = 0, 4 + 3e = - 10,2 + 3f = 18}} \\
{\text{a = 12,b = 4,c = }}\dfrac{{25}}{3},{\text{d = }}\dfrac{4}{3},{\text{e = }}\dfrac{{ - 14}}{3},{\text{f = }}\dfrac{{16}}{3} \\
{\text{NOTE:If the matrices are equal than their corresponding elements are also equal}} \\
$
{\text{Two matrix can be added if their order is same (ORDER: - no of rows}} \times {\text{no of columns)}}{\text{.}} \\
{\text{so from the equation 2A + 3X = 5B we can say that order of matrices A,B,X is same }}\left( {{\text{because two matrices can be added only if their order is same}}} \right). \\
{\text{So the given equation is 2A + 3X = 5B}}{\text{.}} \\
{\text{Let X be a matrix with elements}}\left[ \begin{subarray}{l}
{\text{a d}} \\
{\text{b e}} \\
{\text{c f}}
\end{subarray} \right] \\
2\left[ \begin{subarray}{l}
2\,\,\,\,\,\,\,\,\, - 2 \\
4\,\,\,\,\,\,\,\,\,\,\,\,\,2 \\
- 5\,\,\,\,\,\,\,\,\,\,1
\end{subarray} \right] + 3\left[ \begin{subarray}{l}
{\text{a d}} \\
{\text{b e}} \\
{\text{c f}}
\end{subarray} \right] = 5\left[ \begin{subarray}{l}
8\,\,\,\,\,\,\,\,\,\,\,\,0 \\
4\,\,\,\,\,\,\,\, - 2 \\
3\,\,\,\,\,\,\,\,\,\,\,\,6
\end{subarray} \right] \\
{\text{now we know that corresponding elements of two equal matrices are equal}} \\
{\text{solving the equation }}\left[ \begin{subarray}{l}
2 \times 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 \times ( - 2) \\
2 \times 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 \times 2 \\
2 \times ( - 5)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 \times 1
\end{subarray} \right] + \left[ \begin{subarray}{l}
3 \times {\text{a 3}} \times {\text{d}} \\
{\text{3}} \times {\text{b 3}} \times {\text{e}} \\
{\text{3}} \times {\text{c 3}} \times {\text{f}}
\end{subarray} \right] = \left[ \begin{subarray}{l}
5 \times 8\,\,\,\,\,\,\,\,\,5 \times 0\, \\
5 \times 4\,\,\,\,\,\,\,\,\,5 \times \left( { - 2} \right) \\
5 \times 3\,\,\,\,\,\,\,\,\,5 \times 6
\end{subarray} \right],{\text{ (When you multiply any general matrix i}}{\text{.e A = }}\left[ \begin{subarray}{l}
{\text{a c}} \\
{\text{b d}}
\end{subarray} \right]{\text{by a scalar k;kA = }}\left[ \begin{subarray}{l}
{\text{ka kc}} \\
{\text{kb kd}}
\end{subarray} \right]) \\
\left[ \begin{subarray}{l}
4 + {\text{3a - 4 + 3d}} \\
{\text{8 + 3b 4 + 3e}} \\
{\text{ - 10 + 3c 2 + 3f}}
\end{subarray} \right] = \,\left[ \begin{subarray}{l}
40\,\,\,\,\,\,\,\,\,\,\,\,0 \\
20\,\,\,\,\,\,\,\,\,\, - 10 \\
15\,\,\,\,\,\,\,\,\,\,\,\,\,\,18
\end{subarray} \right] \\
{\text{now compare the corresponding elements of the matrices as they are equal and (find out values of a,b,c,d,e,f)}} \\
{\text{4 + 3a = 40, 8 + 3b = 20, - 10 + 3c = 15, - 4 + 3d = 0, 4 + 3e = - 10,2 + 3f = 18}} \\
{\text{a = 12,b = 4,c = }}\dfrac{{25}}{3},{\text{d = }}\dfrac{4}{3},{\text{e = }}\dfrac{{ - 14}}{3},{\text{f = }}\dfrac{{16}}{3} \\
{\text{NOTE:If the matrices are equal than their corresponding elements are also equal}} \\
$
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main