
If $\alpha $,$\beta $,$\gamma $ are the distance of the vertices of a triangle of $ABC$ from the corresponding point of contact with the incircle, then
$(A)$. $s = \alpha + \beta + \gamma $
$(B)$. ${\gamma ^2} = \dfrac{{\alpha \beta \gamma }}{{\alpha + \beta + \gamma }}$
$(C)$. ${\Delta ^2} = \left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma $
$(D)$. $2s = \alpha + \beta + \gamma $
Answer
232.8k+ views
Hint: Use theorem tangent to the circle to find sides of the triangle and Heron’s formula to compute the area of the triangle.

Let ABC be the triangle with incircle inside as given in the problem.
Let the incircle touch the sides of the triangle ABC at points D,E and F respectively .
It is given that $\alpha $,$\beta $,$\gamma $ are the distance of the vertices of a triangle of $ABC$ from the corresponding point of contact with the incircle.
Therefore, we assume,
$
AD = \alpha \\
BD = \beta \\
CE = \gamma \\
$
Theorem tangent to the circle states that a point external to the circle subtends equal tangents to the circle.
Using this theorem in triangle $ABC$,we get
$
AE = \alpha \\
BF = \beta \\
CF = \gamma \\
$
We need to find the area of the triangle $ABC$ using Heron’s formula.
Heron’s formula states that area of the triangle is given by,
\[\Delta = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} {\text{ (1)}}\]
In the above equation, $s$ is the semi-perimeter of the triangle and $a,b,c$ are the sides of the triangle.
Sides of the triangle $ABC$ are given by
$\left(
a = AB = \alpha + \beta \\
b = BC = \beta + \gamma \\
c = AC = \alpha + \gamma \\
\right){\text{ (2)}}$
Semi-perimeter of triangle $ABC$ is given by,
$
s = \dfrac{{a + b + c}}{2} \\
\Rightarrow s = \dfrac{{\alpha + \beta + \beta + \gamma + \alpha + \gamma }}{2} = \alpha + \beta + \gamma {\text{ (3)}} \\
$
Using equation $(2)$and $(3)$ in $(1)$,we get
\[
\Delta = \sqrt {\left( {\alpha + \beta + \gamma } \right)\left( {\alpha + \beta + \gamma - \alpha - \beta } \right)\left( {\alpha + \beta + \gamma - \beta - \gamma } \right)\left( {\alpha + \beta + \gamma - \alpha - \gamma } \right)} \\
\Rightarrow \Delta = \sqrt {\left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma } {\text{ }} \\
\]
Squaring both sides of the above equation, we get
\[{\Delta ^2} = \left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma {\text{ }}\]
Hence option $(C)$. ${\Delta ^2} = \left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma $ is the correct answer.
Note: Always try to draw the diagram in problems related to incircle. Try to remember the properties of incircle. Geometrical theorems should also be kept in mind while solving similar problems.

Let ABC be the triangle with incircle inside as given in the problem.
Let the incircle touch the sides of the triangle ABC at points D,E and F respectively .
It is given that $\alpha $,$\beta $,$\gamma $ are the distance of the vertices of a triangle of $ABC$ from the corresponding point of contact with the incircle.
Therefore, we assume,
$
AD = \alpha \\
BD = \beta \\
CE = \gamma \\
$
Theorem tangent to the circle states that a point external to the circle subtends equal tangents to the circle.
Using this theorem in triangle $ABC$,we get
$
AE = \alpha \\
BF = \beta \\
CF = \gamma \\
$
We need to find the area of the triangle $ABC$ using Heron’s formula.
Heron’s formula states that area of the triangle is given by,
\[\Delta = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} {\text{ (1)}}\]
In the above equation, $s$ is the semi-perimeter of the triangle and $a,b,c$ are the sides of the triangle.
Sides of the triangle $ABC$ are given by
$\left(
a = AB = \alpha + \beta \\
b = BC = \beta + \gamma \\
c = AC = \alpha + \gamma \\
\right){\text{ (2)}}$
Semi-perimeter of triangle $ABC$ is given by,
$
s = \dfrac{{a + b + c}}{2} \\
\Rightarrow s = \dfrac{{\alpha + \beta + \beta + \gamma + \alpha + \gamma }}{2} = \alpha + \beta + \gamma {\text{ (3)}} \\
$
Using equation $(2)$and $(3)$ in $(1)$,we get
\[
\Delta = \sqrt {\left( {\alpha + \beta + \gamma } \right)\left( {\alpha + \beta + \gamma - \alpha - \beta } \right)\left( {\alpha + \beta + \gamma - \beta - \gamma } \right)\left( {\alpha + \beta + \gamma - \alpha - \gamma } \right)} \\
\Rightarrow \Delta = \sqrt {\left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma } {\text{ }} \\
\]
Squaring both sides of the above equation, we get
\[{\Delta ^2} = \left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma {\text{ }}\]
Hence option $(C)$. ${\Delta ^2} = \left( {\alpha + \beta + \gamma } \right)\alpha \beta \gamma $ is the correct answer.
Note: Always try to draw the diagram in problems related to incircle. Try to remember the properties of incircle. Geometrical theorems should also be kept in mind while solving similar problems.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Square vs Rhombus: Key Differences Explained for Students

Power vs Exponent: Key Differences Explained for Students

Arithmetic Mean Formula Explained Simply

Algebraic Formula: Key Concepts & Easy Examples

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

JEE Mains 2026 January 21 Shift 2 Question Paper with Solutions PDF - Complete Exam Analysis

JEE Main 2026 Jan 22 Shift 2 Today Paper Live Analysis With Detailed Solutions

Other Pages
NCERT Solutions For Class 9 Maths Chapter 9 Circles (2025-26)

Fuel Cost Calculator – Estimate Your Journey Expenses Easily

NCERT Solutions For Class 9 Maths Chapter 11 Surface Areas and Volumes (2025-26)

NCERT Solutions For Class 9 Maths Chapter 11 Surface Areas And Volumes Exercise 11.3 (2025-26)

NCERT Solutions For Class 9 Maths Chapter 12 Statistics (2025-26)

NCERT Solutions For Class 9 Maths Chapter 10 Heron's Formula (2025-26)

