Answer
Verified
110.4k+ views
Hint: In this question, we will simply equate the dimensions of C, g, P with the dimensions of length and compare them.
Dimensions of velocity of light is given by-
Dim $C = [{M^0}{L^1}{T^{ - 1}}]$
Dimensions of acceleration of gravity is given by-
Dim $g = [{M^0}{L^1}{T^{ - 2}}]$
Dimensions of atmospheric pressure is given by-
Dim $P = [{M^1}{L^{ - 1}}{T^{ - 2}}]$
Complete step-by-step answer:
Given: Velocity of light=C
Acceleration due to gravity - g
Pressure -P
Let 'L' be the length.
Let's assume,
$L = {C^x}{g^y}{P^z}$ …eq i)
Now putting all the values in above equation,
$[{M^0}L{T^0}]$=${[{M^0}{L^1}{T^{ - 1}}]^x}{[{M^0}{L^1}{T^{ - 2}}]^y}{[{M^1}{L^{ - 1}}{T^{ - 2}}]^z}$
⇒$[{M^0}{L^1}{T^0}] = [{M^z}{L^{x + y - z}}{T^{ - x - 2y - 2z}}]$
Applying the principle of homogeneity,
Comparing the powers of M,
$z = 0$
Compare the powers of L,
$x + y - z = 1$ ( As z=0)
⇒$x + y = 1$
⇒$x = 1 - y$ …eq ii)
Compare the powers of T,
$ - x - 2y - 2z = 0$ ( As z=0)
⇒$ - x - 2y = 0$ …eq iii)
Put the value of eq ii) in above equation, we get
⇒ $ - (1 - y) - 2y = 0$
⇒$y = - 1$
Putting the value of y in eq ii), we get
⇒$x = 2$
Now, put the values of x, y and z in eq i)
Therefore, the dimensions of length will be:
$L = {C^2}{g^{ - 1}}{P^0}$
⇒$L = \dfrac{{{C^2}}}{g}$
Hence, option D is the correct answer.
Note: Principle of Homogeneity: It states that dimensions of each of the terms of a dimensional equation on both sides should be the same. This principle is helpful because it helps us convert the units from one form to another.
Applications of Dimensional Analysis:
1. To check the consistency of a dimensional equation.
2. To derive the relation between physical quantities in physical phenomena.
3. To change units from one system to another.
Dimensions of velocity of light is given by-
Dim $C = [{M^0}{L^1}{T^{ - 1}}]$
Dimensions of acceleration of gravity is given by-
Dim $g = [{M^0}{L^1}{T^{ - 2}}]$
Dimensions of atmospheric pressure is given by-
Dim $P = [{M^1}{L^{ - 1}}{T^{ - 2}}]$
Complete step-by-step answer:
Given: Velocity of light=C
Acceleration due to gravity - g
Pressure -P
Let 'L' be the length.
Let's assume,
$L = {C^x}{g^y}{P^z}$ …eq i)
Now putting all the values in above equation,
$[{M^0}L{T^0}]$=${[{M^0}{L^1}{T^{ - 1}}]^x}{[{M^0}{L^1}{T^{ - 2}}]^y}{[{M^1}{L^{ - 1}}{T^{ - 2}}]^z}$
⇒$[{M^0}{L^1}{T^0}] = [{M^z}{L^{x + y - z}}{T^{ - x - 2y - 2z}}]$
Applying the principle of homogeneity,
Comparing the powers of M,
$z = 0$
Compare the powers of L,
$x + y - z = 1$ ( As z=0)
⇒$x + y = 1$
⇒$x = 1 - y$ …eq ii)
Compare the powers of T,
$ - x - 2y - 2z = 0$ ( As z=0)
⇒$ - x - 2y = 0$ …eq iii)
Put the value of eq ii) in above equation, we get
⇒ $ - (1 - y) - 2y = 0$
⇒$y = - 1$
Putting the value of y in eq ii), we get
⇒$x = 2$
Now, put the values of x, y and z in eq i)
Therefore, the dimensions of length will be:
$L = {C^2}{g^{ - 1}}{P^0}$
⇒$L = \dfrac{{{C^2}}}{g}$
Hence, option D is the correct answer.
Note: Principle of Homogeneity: It states that dimensions of each of the terms of a dimensional equation on both sides should be the same. This principle is helpful because it helps us convert the units from one form to another.
Applications of Dimensional Analysis:
1. To check the consistency of a dimensional equation.
2. To derive the relation between physical quantities in physical phenomena.
3. To change units from one system to another.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Two mirrors one concave and the other convex are placed class 12 physics JEE_Main
A coil of inductance 020 H is connected in series with class 12 physics JEE_Main
The adjoining diagram shows the spectral energy density class 11 physics JEE_MAIN
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Give one chemical test to distinguish between the following class 12 chemistry JEE_Main
In a steady state of heat conduction the temperature class 11 physics JEE_Main