If g is the acceleration due to gravity on the surface of the earth, the gain in potential energy of an object of mass m from the earth’s surface to a height equal to the radius of earth is:
A) $\dfrac{{mgR}}{4}$
B) $\dfrac{{mgR}}{2}$
C) $mgR$
D) $2mgR$
Answer
Verified
122.7k+ views
Hint: The potential energy of a body is the energy possessed by the virtue of its position in the gravitational field. The gravitational potential energy of an object is given by the following equation:
$U = - \dfrac{{GMm}}{r}$
Where G=gravitational constant, M=mass of the earth, m=mass of the body, and r=distance of body from the centre of the earth. Calculate the two potential energies one at surface of earth and other at height equal to R, then gain in potential energy is given by difference in two potential energies.
Complete step by step solution:
Step1: Calculate the gravitational potential energy at the surface of the earth.
The gravitational potential energy of an object is given by the following equation-
$U = - \dfrac{{GMm}}{r}$
Where G=gravitational constant, M=mass of the earth, m=mass of the body, and r=distance of body from the centre of the earth.
At earth’s surface r=R
Therefore,
${U_1} = - \dfrac{{GMm}}{R}$
Step2: calculate the gravitational potential energy at a height of R.
Therefore, total distance from centre of earth (r)= R+R=2R
Gravitational potential energy at this height is given by-
${U_2} = - \dfrac{{GMm}}{{2R}}$
Step3: Calculate the gain in potential energy.
Therefore,
$\Delta U = {U_2} - {U_1}$
$\Delta U = - \dfrac{{GMm}}{{2R}} + \dfrac{{GMm}}{R}$
$ \Rightarrow \Delta U = \dfrac{{GMm}}{{2R}}$
Also, acceleration due to gravity is given by-
$g = \dfrac{{GM}}{{{R^2}}}$
$ \Rightarrow GM = g{R^2}$
Substituting above, we get –
$\Delta U = \dfrac{{(g{R^2})m}}{{2R}}$
$\Delta U = \dfrac{{mgR}}{2}$
Which is gain in the potential energy, hence option (B) is the correct answer.
Additional information:
The gravitational potential is a scalar field that affects all objects with mass. The gravitational potential energy is the potential energy of a specific object in this field, so in other words, it depends on mass. It's like potential is always there, and the energy is a single number attached to a certain object which represents how much the object experiences the field.
Note: The negative sign in the equation of gravitational potential energy indicates that the intensity of the energy decreases as the height above the Earth’s surface increases. The students should not think that the magnitude of energy decreases below zero, which is never possible in nature.
$U = - \dfrac{{GMm}}{r}$
Where G=gravitational constant, M=mass of the earth, m=mass of the body, and r=distance of body from the centre of the earth. Calculate the two potential energies one at surface of earth and other at height equal to R, then gain in potential energy is given by difference in two potential energies.
Complete step by step solution:
Step1: Calculate the gravitational potential energy at the surface of the earth.
The gravitational potential energy of an object is given by the following equation-
$U = - \dfrac{{GMm}}{r}$
Where G=gravitational constant, M=mass of the earth, m=mass of the body, and r=distance of body from the centre of the earth.
At earth’s surface r=R
Therefore,
${U_1} = - \dfrac{{GMm}}{R}$
Step2: calculate the gravitational potential energy at a height of R.
Therefore, total distance from centre of earth (r)= R+R=2R
Gravitational potential energy at this height is given by-
${U_2} = - \dfrac{{GMm}}{{2R}}$
Step3: Calculate the gain in potential energy.
Therefore,
$\Delta U = {U_2} - {U_1}$
$\Delta U = - \dfrac{{GMm}}{{2R}} + \dfrac{{GMm}}{R}$
$ \Rightarrow \Delta U = \dfrac{{GMm}}{{2R}}$
Also, acceleration due to gravity is given by-
$g = \dfrac{{GM}}{{{R^2}}}$
$ \Rightarrow GM = g{R^2}$
Substituting above, we get –
$\Delta U = \dfrac{{(g{R^2})m}}{{2R}}$
$\Delta U = \dfrac{{mgR}}{2}$
Which is gain in the potential energy, hence option (B) is the correct answer.
Additional information:
The gravitational potential is a scalar field that affects all objects with mass. The gravitational potential energy is the potential energy of a specific object in this field, so in other words, it depends on mass. It's like potential is always there, and the energy is a single number attached to a certain object which represents how much the object experiences the field.
Note: The negative sign in the equation of gravitational potential energy indicates that the intensity of the energy decreases as the height above the Earth’s surface increases. The students should not think that the magnitude of energy decreases below zero, which is never possible in nature.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line