
If $T$ is surface temperature of sun, $R$ is the radius of sun, $r$ is radius of earth’s orbit and $S$ is solar constant, then total radiant energy of sun per unit time from the sphere of radius $r,$ then
(A) $\pi {{r}^{2}}S$
( B) $4\pi {{r}^{2}}S$
(C) $\sigma \dfrac{4}{3}\pi {{R}^{3}}{{T}^{4}}$
(D) $\sigma 4\pi {{r}^{2}}{{T}^{4}}$
Answer
232.8k+ views
Hint to calculate here, the total radiant energy of sun per unit time(from sphere of radius $r$ ) ,we can use here the Stefan’s-Boltzmann law.
It states that total energy radiated per unit surface area of the black body across all wavelengths per unit time, is directly proportional to the fourth power of the blackbody’s thermodynamic temperature $T$.
Formula used
\[\text{Energy radiated per unit surface area per unit time}=\sigma {{T}^{4}}\times 4\pi {{r}^{2}}\]
Complete step by step solution : Using Stefan’s Boltzmann law.
\[\text{Energy radiated per unit surface area per unit time}=\sigma {{T}^{4}}\]
Where $\sigma $ is Stefan’s Boltzmann constant
Here, surface area of earth$=4\pi {{r}^{2}}$
Thus, total energy radiated per unit time,
$L=\sigma {{T}^{4}}\times 4\pi {{r}^{2}}$
Thus, option (d) is correct.
Additional information
Blackbody, in physics, a surface that absorbs all radiant energy falling on it. The term arises because incident visible light will be absorbed rather than reflected, and therefore the surface will appear black. The concept of such a perfect absorber of energy is extremely useful in the study of radiation phenomena.
Note: Learn the formula and statement of Stefan’s Boltzmann law. Learn the value of the Stefan’s Boltzmann constant as well, to be used in numerical problems.
It is derived from other known constants. The value of constant is:
\[\begin{align}
& \sigma =\dfrac{2{{\pi }^{5}}{{k}^{4}}}{15{{c}^{2}}{{h}^{3}}}=5\cdot 670373\times {{10}^{-8}}\text{ }W{{m}^{-2}}{{k}^{-4}} \\
& k:\text{Boltzmann constant} \\
& h:\text{Plank }\!\!'\!\!\text{ s constant} \\
& c:\text{speed of light in a vacuum} \\
\end{align}\]
It states that total energy radiated per unit surface area of the black body across all wavelengths per unit time, is directly proportional to the fourth power of the blackbody’s thermodynamic temperature $T$.
Formula used
\[\text{Energy radiated per unit surface area per unit time}=\sigma {{T}^{4}}\times 4\pi {{r}^{2}}\]
Complete step by step solution : Using Stefan’s Boltzmann law.
\[\text{Energy radiated per unit surface area per unit time}=\sigma {{T}^{4}}\]
Where $\sigma $ is Stefan’s Boltzmann constant
Here, surface area of earth$=4\pi {{r}^{2}}$
Thus, total energy radiated per unit time,
$L=\sigma {{T}^{4}}\times 4\pi {{r}^{2}}$
Thus, option (d) is correct.
Additional information
Blackbody, in physics, a surface that absorbs all radiant energy falling on it. The term arises because incident visible light will be absorbed rather than reflected, and therefore the surface will appear black. The concept of such a perfect absorber of energy is extremely useful in the study of radiation phenomena.
Note: Learn the formula and statement of Stefan’s Boltzmann law. Learn the value of the Stefan’s Boltzmann constant as well, to be used in numerical problems.
It is derived from other known constants. The value of constant is:
\[\begin{align}
& \sigma =\dfrac{2{{\pi }^{5}}{{k}^{4}}}{15{{c}^{2}}{{h}^{3}}}=5\cdot 670373\times {{10}^{-8}}\text{ }W{{m}^{-2}}{{k}^{-4}} \\
& k:\text{Boltzmann constant} \\
& h:\text{Plank }\!\!'\!\!\text{ s constant} \\
& c:\text{speed of light in a vacuum} \\
\end{align}\]
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

