Answer
Verified
112.8k+ views
Hint to calculate here, the total radiant energy of sun per unit time(from sphere of radius $r$ ) ,we can use here the Stefan’s-Boltzmann law.
It states that total energy radiated per unit surface area of the black body across all wavelengths per unit time, is directly proportional to the fourth power of the blackbody’s thermodynamic temperature $T$.
Formula used
\[\text{Energy radiated per unit surface area per unit time}=\sigma {{T}^{4}}\times 4\pi {{r}^{2}}\]
Complete step by step solution : Using Stefan’s Boltzmann law.
\[\text{Energy radiated per unit surface area per unit time}=\sigma {{T}^{4}}\]
Where $\sigma $ is Stefan’s Boltzmann constant
Here, surface area of earth$=4\pi {{r}^{2}}$
Thus, total energy radiated per unit time,
$L=\sigma {{T}^{4}}\times 4\pi {{r}^{2}}$
Thus, option (d) is correct.
Additional information
Blackbody, in physics, a surface that absorbs all radiant energy falling on it. The term arises because incident visible light will be absorbed rather than reflected, and therefore the surface will appear black. The concept of such a perfect absorber of energy is extremely useful in the study of radiation phenomena.
Note: Learn the formula and statement of Stefan’s Boltzmann law. Learn the value of the Stefan’s Boltzmann constant as well, to be used in numerical problems.
It is derived from other known constants. The value of constant is:
\[\begin{align}
& \sigma =\dfrac{2{{\pi }^{5}}{{k}^{4}}}{15{{c}^{2}}{{h}^{3}}}=5\cdot 670373\times {{10}^{-8}}\text{ }W{{m}^{-2}}{{k}^{-4}} \\
& k:\text{Boltzmann constant} \\
& h:\text{Plank }\!\!'\!\!\text{ s constant} \\
& c:\text{speed of light in a vacuum} \\
\end{align}\]
It states that total energy radiated per unit surface area of the black body across all wavelengths per unit time, is directly proportional to the fourth power of the blackbody’s thermodynamic temperature $T$.
Formula used
\[\text{Energy radiated per unit surface area per unit time}=\sigma {{T}^{4}}\times 4\pi {{r}^{2}}\]
Complete step by step solution : Using Stefan’s Boltzmann law.
\[\text{Energy radiated per unit surface area per unit time}=\sigma {{T}^{4}}\]
Where $\sigma $ is Stefan’s Boltzmann constant
Here, surface area of earth$=4\pi {{r}^{2}}$
Thus, total energy radiated per unit time,
$L=\sigma {{T}^{4}}\times 4\pi {{r}^{2}}$
Thus, option (d) is correct.
Additional information
Blackbody, in physics, a surface that absorbs all radiant energy falling on it. The term arises because incident visible light will be absorbed rather than reflected, and therefore the surface will appear black. The concept of such a perfect absorber of energy is extremely useful in the study of radiation phenomena.
Note: Learn the formula and statement of Stefan’s Boltzmann law. Learn the value of the Stefan’s Boltzmann constant as well, to be used in numerical problems.
It is derived from other known constants. The value of constant is:
\[\begin{align}
& \sigma =\dfrac{2{{\pi }^{5}}{{k}^{4}}}{15{{c}^{2}}{{h}^{3}}}=5\cdot 670373\times {{10}^{-8}}\text{ }W{{m}^{-2}}{{k}^{-4}} \\
& k:\text{Boltzmann constant} \\
& h:\text{Plank }\!\!'\!\!\text{ s constant} \\
& c:\text{speed of light in a vacuum} \\
\end{align}\]
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line