
If the capacitance of a nano capacitor is measured in terms of a unit \['\mu '\] made by combining the electronic charge \['e'\] , bohr radius \['{a_0}'\] , Planck’s constant \['h'\] and speed of light \['c'\] then which of the following relation is possible?
A) \[\mu = \dfrac{{{e^2}c}}{{h{a_0}}}\]
B) \[\mu = \dfrac{{{e^2}h}}{{c{a_0}}}\]
C) \[\mu = \dfrac{{hc}}{{{e^2}{a_0}}}\]
D) \[\mu = \dfrac{{{e^2}{a_0}}}{{hc}}\]
Answer
233.1k+ views
Hint: Check the dimensions of the both sides of the given equations. The one which has dimensions on left hand and right hand equal will be the correct option.
Complete step by step solution:
We will solve this formula with the help of dimensional analysis . If a relation is correct, then the dimensions on the right hand side will be equal to the dimensions on the left hand side . All the physical quantities in physics can be expressed in terms of some sort of combinations of base quantities ( length, mass, time being the most common).
Dimensions of any quantity in physics are the powers to which the fundamental ( base) quantities can be raised to represent that quantity completely .
Now let us assume that given four quantities are dimensionally comparable and are related as follows :
$[\mu ] = {[e]^w}{[{a_0}]^x}{[h]^y}{[c]^z}$ ……….(i)
where $w,x,y,z$ are the powers of the to which these quantities are raised.
$
[{M^{ - 1}}{L^{ - 2}}{T^4}{A^2}] = {[AT]^w}{[L]^x}{[M{L^2}{T^{ - 1}}]^y}{[L{T^{ - 1}}]^z} \\
[{M^{ - 1}}{L^{ - 2}}{T^4}{A^2}] = [{M^y}{L^{x + 2y + z}}{T^{w - y - z}}{A^w}] \\
\\
$
Comparing both sides we get-
$
w = 2 \\
y = - 1 \\
$
$
x + 2y + z = - 2 \\
w - y - z = 4 \\
$
By solving above equations we get: $w = 2,x = 1,y = - 1,z = - 1$
Equation (i) now becomes –
$
[\mu ] = {[e]^2}{[{a_0}]^1}{[h]^{ - 1}}{[c]^{ - 1}} \\
\mu = \dfrac{{{e^2}{a_0}}}{{hc}} \\
$
We have got the answer.
Hence , the correct option is (D).
Note: We have to keep in mind that while writing dimensional formula we need to write it only in terms of fundamental units and not derived units. This will not work if instead we write the derived units.
Complete step by step solution:
We will solve this formula with the help of dimensional analysis . If a relation is correct, then the dimensions on the right hand side will be equal to the dimensions on the left hand side . All the physical quantities in physics can be expressed in terms of some sort of combinations of base quantities ( length, mass, time being the most common).
Dimensions of any quantity in physics are the powers to which the fundamental ( base) quantities can be raised to represent that quantity completely .
Now let us assume that given four quantities are dimensionally comparable and are related as follows :
$[\mu ] = {[e]^w}{[{a_0}]^x}{[h]^y}{[c]^z}$ ……….(i)
where $w,x,y,z$ are the powers of the to which these quantities are raised.
$
[{M^{ - 1}}{L^{ - 2}}{T^4}{A^2}] = {[AT]^w}{[L]^x}{[M{L^2}{T^{ - 1}}]^y}{[L{T^{ - 1}}]^z} \\
[{M^{ - 1}}{L^{ - 2}}{T^4}{A^2}] = [{M^y}{L^{x + 2y + z}}{T^{w - y - z}}{A^w}] \\
\\
$
Comparing both sides we get-
$
w = 2 \\
y = - 1 \\
$
$
x + 2y + z = - 2 \\
w - y - z = 4 \\
$
By solving above equations we get: $w = 2,x = 1,y = - 1,z = - 1$
Equation (i) now becomes –
$
[\mu ] = {[e]^2}{[{a_0}]^1}{[h]^{ - 1}}{[c]^{ - 1}} \\
\mu = \dfrac{{{e^2}{a_0}}}{{hc}} \\
$
We have got the answer.
Hence , the correct option is (D).
Note: We have to keep in mind that while writing dimensional formula we need to write it only in terms of fundamental units and not derived units. This will not work if instead we write the derived units.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

