Answer
Verified
114.9k+ views
Hint: Check the dimensions of the both sides of the given equations. The one which has dimensions on left hand and right hand equal will be the correct option.
Complete step by step solution:
We will solve this formula with the help of dimensional analysis . If a relation is correct, then the dimensions on the right hand side will be equal to the dimensions on the left hand side . All the physical quantities in physics can be expressed in terms of some sort of combinations of base quantities ( length, mass, time being the most common).
Dimensions of any quantity in physics are the powers to which the fundamental ( base) quantities can be raised to represent that quantity completely .
Now let us assume that given four quantities are dimensionally comparable and are related as follows :
$[\mu ] = {[e]^w}{[{a_0}]^x}{[h]^y}{[c]^z}$ ……….(i)
where $w,x,y,z$ are the powers of the to which these quantities are raised.
$
[{M^{ - 1}}{L^{ - 2}}{T^4}{A^2}] = {[AT]^w}{[L]^x}{[M{L^2}{T^{ - 1}}]^y}{[L{T^{ - 1}}]^z} \\
[{M^{ - 1}}{L^{ - 2}}{T^4}{A^2}] = [{M^y}{L^{x + 2y + z}}{T^{w - y - z}}{A^w}] \\
\\
$
Comparing both sides we get-
$
w = 2 \\
y = - 1 \\
$
$
x + 2y + z = - 2 \\
w - y - z = 4 \\
$
By solving above equations we get: $w = 2,x = 1,y = - 1,z = - 1$
Equation (i) now becomes –
$
[\mu ] = {[e]^2}{[{a_0}]^1}{[h]^{ - 1}}{[c]^{ - 1}} \\
\mu = \dfrac{{{e^2}{a_0}}}{{hc}} \\
$
We have got the answer.
Hence , the correct option is (D).
Note: We have to keep in mind that while writing dimensional formula we need to write it only in terms of fundamental units and not derived units. This will not work if instead we write the derived units.
Complete step by step solution:
We will solve this formula with the help of dimensional analysis . If a relation is correct, then the dimensions on the right hand side will be equal to the dimensions on the left hand side . All the physical quantities in physics can be expressed in terms of some sort of combinations of base quantities ( length, mass, time being the most common).
Dimensions of any quantity in physics are the powers to which the fundamental ( base) quantities can be raised to represent that quantity completely .
Now let us assume that given four quantities are dimensionally comparable and are related as follows :
$[\mu ] = {[e]^w}{[{a_0}]^x}{[h]^y}{[c]^z}$ ……….(i)
where $w,x,y,z$ are the powers of the to which these quantities are raised.
$
[{M^{ - 1}}{L^{ - 2}}{T^4}{A^2}] = {[AT]^w}{[L]^x}{[M{L^2}{T^{ - 1}}]^y}{[L{T^{ - 1}}]^z} \\
[{M^{ - 1}}{L^{ - 2}}{T^4}{A^2}] = [{M^y}{L^{x + 2y + z}}{T^{w - y - z}}{A^w}] \\
\\
$
Comparing both sides we get-
$
w = 2 \\
y = - 1 \\
$
$
x + 2y + z = - 2 \\
w - y - z = 4 \\
$
By solving above equations we get: $w = 2,x = 1,y = - 1,z = - 1$
Equation (i) now becomes –
$
[\mu ] = {[e]^2}{[{a_0}]^1}{[h]^{ - 1}}{[c]^{ - 1}} \\
\mu = \dfrac{{{e^2}{a_0}}}{{hc}} \\
$
We have got the answer.
Hence , the correct option is (D).
Note: We have to keep in mind that while writing dimensional formula we need to write it only in terms of fundamental units and not derived units. This will not work if instead we write the derived units.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs