If the distance between the earth and the sun were reduced to half its present value, then the number of days in one year would have been
A) \[65\]
B) \[129\]
C) \[183\]
D) \[730\]
Answer
Verified
123k+ views
Hint: The number of days in a year or as we commonly call it, one calendar year, is the number of days of the earth’s orbital period. So if we can find the change in the time which the earth takes to complete one revolution around the earth, we can find the new duration of a calendar year.
Complete step by step solution:
The laws explaining the orbiting of planets, asteroids and comets around are known as Kepler’s laws.
Kepler’s laws are a compilation of three laws which are as follows:
Every planet’s orbit is an ellipse with the sun at a focus
A line joining the sun and a planet sweeps out equal areas in equal times
The square of a planet’s orbital period is proportional to the cube of the semi-major axis of its orbit.
Since we are concerned with the orbital period of the earth, we will only deal with the third law.
Earth’s orbit has an eccentricity of less than \[0.02\]. Due to this fact, we can approximately consider the earth’s orbit to be circular. Reviewing the third law with this approximation, we can state that
\[{{T}^{2}}={{r}^{3}}\] where \[T\] is the period of revolution of the earth and \[r\] is the radius of the earth’s orbit.
Considering two cases, where the radius in the second case is half of the radius in the first case, we can say that
\[\dfrac{T_{1}^{2}}{T_{2}^{2}}=\dfrac{r_{1}^{3}}{r_{2}^{3}}\] where \[{{T}_{1}}\] and \[{{T}_{2}}\] are the time periods of revolution of the earth in the two corresponding cases.
Substituting the values in the above expression, we get
\[\begin{align}
& \dfrac{{{(365)}^{2}}}{T_{2}^{2}}=\dfrac{r_{1}^{3}}{{{(0.5{{r}_{1}})}^{3}}} \\
& \Rightarrow \dfrac{{{(365)}^{2}}}{T_{2}^{2}}={{(2)}^{3}} \\
& \Rightarrow T_{2}^{2}=\dfrac{{{(365)}^{2}}}{8} \\
& \Rightarrow {{T}_{2}}=\dfrac{365}{2\sqrt{2}}=129.06 \\
& \Rightarrow {{T}_{2}}\simeq 129 \\
\end{align}\]
Hence the new number of days in the year would be \[129\] . Thus the correct option is (B).
Note:Kepler’s laws are used to plot and time the positions of comets and asteroids as they orbit the sun, plot the orbit of moons or man-made space satellites and also used to plot a course to send a rocket into space. Kepler’s laws encapsulate the principle of conservation of angular momentum for planetary systems.
Complete step by step solution:
The laws explaining the orbiting of planets, asteroids and comets around are known as Kepler’s laws.
Kepler’s laws are a compilation of three laws which are as follows:
Every planet’s orbit is an ellipse with the sun at a focus
A line joining the sun and a planet sweeps out equal areas in equal times
The square of a planet’s orbital period is proportional to the cube of the semi-major axis of its orbit.
Since we are concerned with the orbital period of the earth, we will only deal with the third law.
Earth’s orbit has an eccentricity of less than \[0.02\]. Due to this fact, we can approximately consider the earth’s orbit to be circular. Reviewing the third law with this approximation, we can state that
\[{{T}^{2}}={{r}^{3}}\] where \[T\] is the period of revolution of the earth and \[r\] is the radius of the earth’s orbit.
Considering two cases, where the radius in the second case is half of the radius in the first case, we can say that
\[\dfrac{T_{1}^{2}}{T_{2}^{2}}=\dfrac{r_{1}^{3}}{r_{2}^{3}}\] where \[{{T}_{1}}\] and \[{{T}_{2}}\] are the time periods of revolution of the earth in the two corresponding cases.
Substituting the values in the above expression, we get
\[\begin{align}
& \dfrac{{{(365)}^{2}}}{T_{2}^{2}}=\dfrac{r_{1}^{3}}{{{(0.5{{r}_{1}})}^{3}}} \\
& \Rightarrow \dfrac{{{(365)}^{2}}}{T_{2}^{2}}={{(2)}^{3}} \\
& \Rightarrow T_{2}^{2}=\dfrac{{{(365)}^{2}}}{8} \\
& \Rightarrow {{T}_{2}}=\dfrac{365}{2\sqrt{2}}=129.06 \\
& \Rightarrow {{T}_{2}}\simeq 129 \\
\end{align}\]
Hence the new number of days in the year would be \[129\] . Thus the correct option is (B).
Note:Kepler’s laws are used to plot and time the positions of comets and asteroids as they orbit the sun, plot the orbit of moons or man-made space satellites and also used to plot a course to send a rocket into space. Kepler’s laws encapsulate the principle of conservation of angular momentum for planetary systems.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Charging and Discharging of Capacitor
Physics Average Value and RMS Value JEE Main 2025
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
Mechanical Properties of Fluids Class 11 Notes: CBSE Physics Chapter 9
JEE Main Course 2025: Get All the Relevant Details
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry