If the momentum of an electron is changed by P, then the de-Broglie wavelength associated with it changes by 0.5%. The initial momentum of an electron will be:
A. 400 P
B. \[\dfrac{\text{P}}{200}\]
C. 100 P
D. 200 P
Answer
Verified
116.4k+ views
Hint: In this problem, we use the equation which was given by de-Broglie. He gave the relationship between the momentum of the particle, the Planck's constant and wavelength i.e. \[\lambda \text{ = }\dfrac{\text{h}}{\text{P}}\]. From here, we can calculate the value of initial momentum.
Complete step by step Answer:
- In the given question, we have to calculate the initial momentum of an electron from the given data.
- According to the de-Broglie, the wavelength of an object that is related to the momentum and mass of the object is known as de-Broglie wavelength.
- Now, as we know that the relationship is given by:
\[\lambda \text{ = }\dfrac{\text{h}}{\text{P}}\] or \[\text{P = }\dfrac{\text{h}}{\lambda }\] …. (1)
- Now, it is given that the final momentum of an electron is 0.5%, so we can write the equation (1) as
$\dfrac{\vartriangle \text{P}}{\text{P}}\ \text{= - }\dfrac{\vartriangle \lambda }{\lambda }$
- The negative sign signifies that the change in the momentum will be opposite to the change in the wavelength.
- So, here we have to the find the value of P which is initial momentum so by putting the value of wavelength we will get:
$\dfrac{\vartriangle \text{P}}{\text{P}}\ \text{= }\dfrac{0.5}{100}$
$\text{P = }\dfrac{100}{0.5}\vartriangle \text{P = 200}\vartriangle \text{P}$
- So, we can say that the initial momentum is equal to the 200 times of the final momentum.
Therefore, option D is the correct answer.
Note: According to de-Broglie the matter consists of dual nature that is particle and wave nature just like the light. We can study the properties of the matter waves of the very small objects. In de-Broglie wavelength, the momentum is defined as the product of the mass and velocity of the object.
Complete step by step Answer:
- In the given question, we have to calculate the initial momentum of an electron from the given data.
- According to the de-Broglie, the wavelength of an object that is related to the momentum and mass of the object is known as de-Broglie wavelength.
- Now, as we know that the relationship is given by:
\[\lambda \text{ = }\dfrac{\text{h}}{\text{P}}\] or \[\text{P = }\dfrac{\text{h}}{\lambda }\] …. (1)
- Now, it is given that the final momentum of an electron is 0.5%, so we can write the equation (1) as
$\dfrac{\vartriangle \text{P}}{\text{P}}\ \text{= - }\dfrac{\vartriangle \lambda }{\lambda }$
- The negative sign signifies that the change in the momentum will be opposite to the change in the wavelength.
- So, here we have to the find the value of P which is initial momentum so by putting the value of wavelength we will get:
$\dfrac{\vartriangle \text{P}}{\text{P}}\ \text{= }\dfrac{0.5}{100}$
$\text{P = }\dfrac{100}{0.5}\vartriangle \text{P = 200}\vartriangle \text{P}$
- So, we can say that the initial momentum is equal to the 200 times of the final momentum.
Therefore, option D is the correct answer.
Note: According to de-Broglie the matter consists of dual nature that is particle and wave nature just like the light. We can study the properties of the matter waves of the very small objects. In de-Broglie wavelength, the momentum is defined as the product of the mass and velocity of the object.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
Equilibrium Class 11 Notes: CBSE Chemistry Chapter 6