Answer
Verified
109.2k+ views
Hint: In this question, we are given the function of the potential field as a function of radius of the gas molecule. First, we need to find the forces acting on the gas molecule. Then we need to use the fact that at equilibrium, the sum of net forces acting on the particle is 0. This will give us the distance at which the force is 0. Substituting this distance in the function of potential energy we will get our solution.
Complete step by step solution
We know that when a body is placed in a field of some potential energy, it experiences force. This force is equal to the negative gradient of the potential field at that point.
\[F = - \dfrac{{dU}}{{dr}}\]
\[
F = - \dfrac{{d(\dfrac{M}{{{r^6}}} - \dfrac{N}{{{r^{12}}}})}}{{dr}} \\
F = - (\dfrac{{ - 6M}}{{{r^7}}} - \dfrac{{ - 12N}}{{{r^{13}}}}) \\
F = \dfrac{{6M}}{{{r^7}}} - \dfrac{{12N}}{{{r^{13}}}} \\
\]
We also know that at linear equilibrium, the net forces acting on the body is equal to 0. Equating this force to 0 we get:
\[
0 = \dfrac{{6M}}{{{r^7}}} - \dfrac{{12N}}{{{r^{13}}}} \\
\dfrac{{6M}}{{{r^7}}} = \dfrac{{12N}}{{{r^{13}}}} \\
{r^6} = \dfrac{{2N}}{M} \\
\]
Substituting the value of r in the equation for potential energy we get:
\[
U = \dfrac{{{M^2}}}{{2N}} - \dfrac{{N{M^2}}}{{{{(2N)}^2}}} \\
U = \dfrac{{{M^2}}}{{2N}} - \dfrac{{{M^2}}}{{4N}} \\
U = \dfrac{{{M^2}}}{{4N}} \\
\]
Therefore the option with the correct answer is option D
Note
Potential energy of an electric or magnetic field will always have a negative sign with them. This negative potential energy means that work must be done to move the charge or the mass of a body against this electric or gravitational field.
Complete step by step solution
We know that when a body is placed in a field of some potential energy, it experiences force. This force is equal to the negative gradient of the potential field at that point.
\[F = - \dfrac{{dU}}{{dr}}\]
\[
F = - \dfrac{{d(\dfrac{M}{{{r^6}}} - \dfrac{N}{{{r^{12}}}})}}{{dr}} \\
F = - (\dfrac{{ - 6M}}{{{r^7}}} - \dfrac{{ - 12N}}{{{r^{13}}}}) \\
F = \dfrac{{6M}}{{{r^7}}} - \dfrac{{12N}}{{{r^{13}}}} \\
\]
We also know that at linear equilibrium, the net forces acting on the body is equal to 0. Equating this force to 0 we get:
\[
0 = \dfrac{{6M}}{{{r^7}}} - \dfrac{{12N}}{{{r^{13}}}} \\
\dfrac{{6M}}{{{r^7}}} = \dfrac{{12N}}{{{r^{13}}}} \\
{r^6} = \dfrac{{2N}}{M} \\
\]
Substituting the value of r in the equation for potential energy we get:
\[
U = \dfrac{{{M^2}}}{{2N}} - \dfrac{{N{M^2}}}{{{{(2N)}^2}}} \\
U = \dfrac{{{M^2}}}{{2N}} - \dfrac{{{M^2}}}{{4N}} \\
U = \dfrac{{{M^2}}}{{4N}} \\
\]
Therefore the option with the correct answer is option D
Note
Potential energy of an electric or magnetic field will always have a negative sign with them. This negative potential energy means that work must be done to move the charge or the mass of a body against this electric or gravitational field.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main