
If the sum of first n terms of an A.P is $c{n^2}$, then the sum of square of these n terms isA. $\dfrac{{n\left( {4{n^2} - 1} \right){c^2}}}{6}$B. $\dfrac{{n\left( {4{n^2} + 1} \right){c^2}}}{3}$C. $\dfrac{{n\left( {4{n^2} - 1} \right){c^2}}}{3}$D. $\dfrac{{n\left( {4{n^2} + 1} \right){c^2}}}{6}$
Answer
217.5k+ views
Hint: In order to solve the above question we must first know what we actually mean by arithmetic series. Suppose a sequence of numbers is arithmetic (that is, it increases or decreases by a constant amount each term), and you want to find the sum of the first n terms. Then we have to apply the formula of sum and get the total number of terms with the help of sum and square it to get the right answer. Doing this will give the right answer.
Complete step-by-step answer:
Note: While solving the above question keep in mind that the sum formula for arithmetic series is used .Keep in mind that such questions are easy to solve but calculations and formulas must be clear. We know that $\sum\limits_{n = 0}^{n = n} {{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} ,\sum\limits_{n = 0}^{n = n} n = \dfrac{{n\left( {n + 1} \right)}}{2}$ and $\sum\limits_0^n {1 = n} $. Knowing this will help us in most of the problems and will give you the right answer.
Complete step-by-step answer:
Denote this partial sum by ${S_n}$. Then we know the general formula of sum of n terms and n-1 terms can be,
${S_n} = \dfrac{n}{2}\left( {a + l} \right)$ and ${S_{n - 1}} = \dfrac{{n - 1}}{2}\left( {a + l} \right)$, where n is the number of terms, a is the first term and l is the last term. The sum of the first n terms of an arithmetic sequence is called an arithmetic series
${t_n} = $total number of n terms
${S_n} = $sum of the n terms
$n = $number of terms
\[{t_n} = {S_n} - {S_{n - 1}} = c\left\{ {{n^2} - {{\left( {n - 1} \right)}^2}} \right\} = c\left( {2n - 1} \right)\]
On squaring the terms both sides we get,
\[ \Rightarrow {t_n}^2 = {c^2}\left( {4{n^2} - 4n + 1} \right)\]
Then taking the summation of both sides and using the formula of sum of ${n^2},n$ and sum of 1 $n$ times.
We get the equations as,
\[ \Rightarrow \sum\limits_{n = 1}^n {{t^2}_n = } {c^2}\left\{ {\dfrac{{4n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \dfrac{{4n\left( {n + 1} \right)}}{2} + n} \right\}\]
We know that $\sum\limits_{n = 0}^{n = n} {{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} ,\sum\limits_{n = 0}^{n = n} n = \dfrac{{n\left( {n + 1} \right)}}{2}$ and $\sum\limits_0^n {1 = n} $
Then on solving further we get the sum of squares of all the terms as,
\[ \Rightarrow \sum\limits_{n = 1}^n {{t^2}_n = } \dfrac{{{c^2}n}}{6}\left\{ {4\left( {n + 1} \right)\left( {2n + 1} \right) - 12\left( {n + 1} \right) + 6} \right\} \]
\[ \Rightarrow \sum\limits_{n = 1}^n {{t^2}_n = } \dfrac{{{c^2}n}}{3}\left\{ {4{n^2} + 6n + 2 - 6n - 6 + 3} \right\} \]
\[ \Rightarrow \sum\limits_{n = 1}^n {{t^2}_n = } \dfrac{{{c^2}n}}{3}\left( {4{n^2} - 1} \right) \]
Therefore the correct answer is \[\dfrac{{{c^2}n\left( {4{n^2} - 1} \right)}}{3}\].
So, the correct option is C.
Recently Updated Pages
Introduction to Dimensions: Understanding the Basics

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

