
If the sum of first n terms of an A.P is $c{n^2}$, then the sum of square of these n terms isA. $\dfrac{{n\left( {4{n^2} - 1} \right){c^2}}}{6}$B. $\dfrac{{n\left( {4{n^2} + 1} \right){c^2}}}{3}$C. $\dfrac{{n\left( {4{n^2} - 1} \right){c^2}}}{3}$D. $\dfrac{{n\left( {4{n^2} + 1} \right){c^2}}}{6}$
Answer
233.1k+ views
Hint: In order to solve the above question we must first know what we actually mean by arithmetic series. Suppose a sequence of numbers is arithmetic (that is, it increases or decreases by a constant amount each term), and you want to find the sum of the first n terms. Then we have to apply the formula of sum and get the total number of terms with the help of sum and square it to get the right answer. Doing this will give the right answer.
Complete step-by-step answer:
Note: While solving the above question keep in mind that the sum formula for arithmetic series is used .Keep in mind that such questions are easy to solve but calculations and formulas must be clear. We know that $\sum\limits_{n = 0}^{n = n} {{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} ,\sum\limits_{n = 0}^{n = n} n = \dfrac{{n\left( {n + 1} \right)}}{2}$ and $\sum\limits_0^n {1 = n} $. Knowing this will help us in most of the problems and will give you the right answer.
Complete step-by-step answer:
Denote this partial sum by ${S_n}$. Then we know the general formula of sum of n terms and n-1 terms can be,
${S_n} = \dfrac{n}{2}\left( {a + l} \right)$ and ${S_{n - 1}} = \dfrac{{n - 1}}{2}\left( {a + l} \right)$, where n is the number of terms, a is the first term and l is the last term. The sum of the first n terms of an arithmetic sequence is called an arithmetic series
${t_n} = $total number of n terms
${S_n} = $sum of the n terms
$n = $number of terms
\[{t_n} = {S_n} - {S_{n - 1}} = c\left\{ {{n^2} - {{\left( {n - 1} \right)}^2}} \right\} = c\left( {2n - 1} \right)\]
On squaring the terms both sides we get,
\[ \Rightarrow {t_n}^2 = {c^2}\left( {4{n^2} - 4n + 1} \right)\]
Then taking the summation of both sides and using the formula of sum of ${n^2},n$ and sum of 1 $n$ times.
We get the equations as,
\[ \Rightarrow \sum\limits_{n = 1}^n {{t^2}_n = } {c^2}\left\{ {\dfrac{{4n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \dfrac{{4n\left( {n + 1} \right)}}{2} + n} \right\}\]
We know that $\sum\limits_{n = 0}^{n = n} {{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} ,\sum\limits_{n = 0}^{n = n} n = \dfrac{{n\left( {n + 1} \right)}}{2}$ and $\sum\limits_0^n {1 = n} $
Then on solving further we get the sum of squares of all the terms as,
\[ \Rightarrow \sum\limits_{n = 1}^n {{t^2}_n = } \dfrac{{{c^2}n}}{6}\left\{ {4\left( {n + 1} \right)\left( {2n + 1} \right) - 12\left( {n + 1} \right) + 6} \right\} \]
\[ \Rightarrow \sum\limits_{n = 1}^n {{t^2}_n = } \dfrac{{{c^2}n}}{3}\left\{ {4{n^2} + 6n + 2 - 6n - 6 + 3} \right\} \]
\[ \Rightarrow \sum\limits_{n = 1}^n {{t^2}_n = } \dfrac{{{c^2}n}}{3}\left( {4{n^2} - 1} \right) \]
Therefore the correct answer is \[\dfrac{{{c^2}n\left( {4{n^2} - 1} \right)}}{3}\].
So, the correct option is C.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

