Answer
Verified
110.7k+ views
Hint: We know a vector having unit magnitude and a direction, which is referred to as unit vectors. We know vectors can be added using the triangle law of parallelogram law. We can use the formula of addition to obtaining the value of the dot products of the two vectors, and this value is then used to find the difference between the two vectors.
Formula used:
Addition of vectors:
$|(\vec a + \vec b){|^2} = |\vec a| + \vec b| + 2.\vec a.\vec b$
Subtraction of vectors:
$|(\vec a - \vec b){|^2} = |\vec a| + \vec b| - 2.\vec a.\vec b$
Where:
$\vec a$ and $\vec b$ are unit vectors.
Complete step by step solution:
When two or more vectors are added, the sum of the vectors is referred to as the resultant vector.
In the question, we are given that the resultant vector of the addition of two vectors is also a vector; thus, we use the formula:
$\Rightarrow |(\vec a + \vec b){|^2} = |\vec a| + \vec b| + 2.\vec a.\vec b$
Let us consider the resultant vector as $\vec c$, and as we know,
$\Rightarrow |\vec c| = |\vec a + \vec b|^2 = 1$ and
since $\vec a$ and $\vec b$ are unit vectors, we write $|a| = |b| = 1$
Therefore, when we put the values in the equation, we get:
$\Rightarrow {1^2} = 1 + 1 + 2.\vec a.\vec b$
Thus, on solving this equation, we get:
$\Rightarrow \vec a.\vec b = - \dfrac{1}{2}$
Now, as per the question, we need to find the difference between the two unit vectors:
$\Rightarrow |(\vec a - \vec b){|^2} = 1 + 1 - 2.\vec a.\vec b$
Now, putting the value of $\vec a.\vec b$ as obtained above, we obtain:
$\Rightarrow |(\vec a - \vec b){|^2} = 1 + 1 + 2 \times \dfrac{1}{2}$
Hence, on solving, we get:
$\Rightarrow |(\vec a - \vec b){|^2} = 3$
Therefore,
$\Rightarrow |(\vec a - \vec b){|^{}} = \sqrt 3$
Thus, option (C) is correct.
Note: The Triangle law of vector addition states that if two vectors represent two sides of a triangle, in both order and magnitude, then the third side will represent the magnitude and direction of the resultant vector. The other law is the Parallelogram law, which states if two vectors represent two adjacent sides of a parallelogram, the diagonal of the parallelogram represents the resultant vector.
Formula used:
Addition of vectors:
$|(\vec a + \vec b){|^2} = |\vec a| + \vec b| + 2.\vec a.\vec b$
Subtraction of vectors:
$|(\vec a - \vec b){|^2} = |\vec a| + \vec b| - 2.\vec a.\vec b$
Where:
$\vec a$ and $\vec b$ are unit vectors.
Complete step by step solution:
When two or more vectors are added, the sum of the vectors is referred to as the resultant vector.
In the question, we are given that the resultant vector of the addition of two vectors is also a vector; thus, we use the formula:
$\Rightarrow |(\vec a + \vec b){|^2} = |\vec a| + \vec b| + 2.\vec a.\vec b$
Let us consider the resultant vector as $\vec c$, and as we know,
$\Rightarrow |\vec c| = |\vec a + \vec b|^2 = 1$ and
since $\vec a$ and $\vec b$ are unit vectors, we write $|a| = |b| = 1$
Therefore, when we put the values in the equation, we get:
$\Rightarrow {1^2} = 1 + 1 + 2.\vec a.\vec b$
Thus, on solving this equation, we get:
$\Rightarrow \vec a.\vec b = - \dfrac{1}{2}$
Now, as per the question, we need to find the difference between the two unit vectors:
$\Rightarrow |(\vec a - \vec b){|^2} = 1 + 1 - 2.\vec a.\vec b$
Now, putting the value of $\vec a.\vec b$ as obtained above, we obtain:
$\Rightarrow |(\vec a - \vec b){|^2} = 1 + 1 + 2 \times \dfrac{1}{2}$
Hence, on solving, we get:
$\Rightarrow |(\vec a - \vec b){|^2} = 3$
Therefore,
$\Rightarrow |(\vec a - \vec b){|^{}} = \sqrt 3$
Thus, option (C) is correct.
Note: The Triangle law of vector addition states that if two vectors represent two sides of a triangle, in both order and magnitude, then the third side will represent the magnitude and direction of the resultant vector. The other law is the Parallelogram law, which states if two vectors represent two adjacent sides of a parallelogram, the diagonal of the parallelogram represents the resultant vector.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main