Answer
Verified
99.9k+ views
Hint- Here, we will be using the general formula for probability of occurrence of an event.
In a chess board, there are total 64 squares and out of these 64 squares we have to choose 3 squares. So, here combination will be used as we have to pick or choose some items from a bulk. Also, there are total 16 squares which comes in a diagonal line. Here, we have to choose 3 squares and find the probability that these 3 squares lie in a diagonal line.
As we know that, \[{\text{Probability of a event}} = \dfrac{{{\text{Possible number of outcomes }}}}{{{\text{Total number of outcomes}}}}\]
Here, possible number of outcomes will be equal to the number of ways of choosing 3 squares out of 16 squares which are present in a diagonal line.
i.e., Possible number of outcomes is \[{}^{16}{C_3}\].
Also, total number of outcomes will be equal to the number of ways of choosing 3 squares out of total 64 squares which are present in a chess box.
i.e., Total number of outcomes is \[{}^{64}{C_3}\] where \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Therefore, Required Probability\[ = \dfrac{{{}^{16}{C_3}}}{{{}^{64}{C_3}}}{\text{ = }}\dfrac{{\dfrac{{16!}}{{3!\left( {16 - 3} \right)!}}}}{{\dfrac{{64!}}{{3!\left( {64 - 3} \right)!}}}} = \dfrac{{16!3!\left( {64 - 3} \right)!}}{{64!3!\left( {16 - 3} \right)!}} = \dfrac{{16!61!}}{{64!13!}} = \dfrac{{16.15.14.13!61!}}{{64.63.62.61!13!}} = \dfrac{{16.15.14}}{{64.63.62}} = \dfrac{5}{{372}}\]
Therefore, the chance that the chosen three squares should be in a diagonal line is \[\dfrac{5}{{372}}\].
Hence, option D is correct.
Note- In these type of problems, the chance or the probability can be computed by applying the general formula for probability which is further solved by knowing the possible and total number of outcomes. Here, we are choosing that’s why taking combinations but if we had to arrange then we would have taken permutations.
In a chess board, there are total 64 squares and out of these 64 squares we have to choose 3 squares. So, here combination will be used as we have to pick or choose some items from a bulk. Also, there are total 16 squares which comes in a diagonal line. Here, we have to choose 3 squares and find the probability that these 3 squares lie in a diagonal line.
As we know that, \[{\text{Probability of a event}} = \dfrac{{{\text{Possible number of outcomes }}}}{{{\text{Total number of outcomes}}}}\]
Here, possible number of outcomes will be equal to the number of ways of choosing 3 squares out of 16 squares which are present in a diagonal line.
i.e., Possible number of outcomes is \[{}^{16}{C_3}\].
Also, total number of outcomes will be equal to the number of ways of choosing 3 squares out of total 64 squares which are present in a chess box.
i.e., Total number of outcomes is \[{}^{64}{C_3}\] where \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Therefore, Required Probability\[ = \dfrac{{{}^{16}{C_3}}}{{{}^{64}{C_3}}}{\text{ = }}\dfrac{{\dfrac{{16!}}{{3!\left( {16 - 3} \right)!}}}}{{\dfrac{{64!}}{{3!\left( {64 - 3} \right)!}}}} = \dfrac{{16!3!\left( {64 - 3} \right)!}}{{64!3!\left( {16 - 3} \right)!}} = \dfrac{{16!61!}}{{64!13!}} = \dfrac{{16.15.14.13!61!}}{{64.63.62.61!13!}} = \dfrac{{16.15.14}}{{64.63.62}} = \dfrac{5}{{372}}\]
Therefore, the chance that the chosen three squares should be in a diagonal line is \[\dfrac{5}{{372}}\].
Hence, option D is correct.
Note- In these type of problems, the chance or the probability can be computed by applying the general formula for probability which is further solved by knowing the possible and total number of outcomes. Here, we are choosing that’s why taking combinations but if we had to arrange then we would have taken permutations.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A block A slides over another block B which is placed class 11 physics JEE_Main
A series RLC circuit consists of an 8Omega resistor class 12 physics JEE_Main
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main
Find the moment of inertia through the face diagonal class 11 physics JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main