Answer
Verified
110.7k+ views
Hint we find the energy of a photon, first we multiply Planck's constant by the speed of light, then divide by the photon's wavelength. Here we know the value of the energy photon wavelength then we calculate the relation of the photon based on the unit.
Useful formula
Energy of photon,
$E = \dfrac{{hc}}{\lambda }$ $ev$
Where,
$\lambda $ is wavelength of radiation,
$h$ is planck constant,
$c$ is the speed of light,
Complete step by step procedure
Given by,
express the energy of a photon in $KeV$
we can find the energy of photon,
If the photon's frequency f is understood, then we use the formula \[E{\text{ }} = {\text{ }}hf.\] This equation was first proposed by Max Planck and is therefore referred to as the equation of Planck.
Similarly, if the photon's wavelength is known, the photon 's energy can be determined using the \[E{\text{ }} = {\text{ }}hc{\text{ }}/{\text{ }}\lambda \] formula.
According to the energy photon,
$E = \dfrac{{hc}}{\lambda }(joules)$ is equal to $E = \dfrac{{hc}}{{e\lambda }}(eV)$
Here,
We know the value,
$hc = 12400\,eV$
So, we can be written as,
\[E = \dfrac{{12400eV}}{\lambda }\]
Therefore,
$E = \dfrac{{12.4}}{\lambda }KeV$
therefore
We get,
$E = 12.4/\lambda $
Hence,
The energy of a photon can be calculated from the relation is $12.4/\lambda $
Thus, option C is the correct answer.
Note Here we calculate the wavelength of photon relation. When a photon is a light particle and also is an electromagnetic radiation packet. The photon's energy depends on how easily the electric field and magnetic field wiggle. The frequency of the photon is high.
Useful formula
Energy of photon,
$E = \dfrac{{hc}}{\lambda }$ $ev$
Where,
$\lambda $ is wavelength of radiation,
$h$ is planck constant,
$c$ is the speed of light,
Complete step by step procedure
Given by,
express the energy of a photon in $KeV$
we can find the energy of photon,
If the photon's frequency f is understood, then we use the formula \[E{\text{ }} = {\text{ }}hf.\] This equation was first proposed by Max Planck and is therefore referred to as the equation of Planck.
Similarly, if the photon's wavelength is known, the photon 's energy can be determined using the \[E{\text{ }} = {\text{ }}hc{\text{ }}/{\text{ }}\lambda \] formula.
According to the energy photon,
$E = \dfrac{{hc}}{\lambda }(joules)$ is equal to $E = \dfrac{{hc}}{{e\lambda }}(eV)$
Here,
We know the value,
$hc = 12400\,eV$
So, we can be written as,
\[E = \dfrac{{12400eV}}{\lambda }\]
Therefore,
$E = \dfrac{{12.4}}{\lambda }KeV$
therefore
We get,
$E = 12.4/\lambda $
Hence,
The energy of a photon can be calculated from the relation is $12.4/\lambda $
Thus, option C is the correct answer.
Note Here we calculate the wavelength of photon relation. When a photon is a light particle and also is an electromagnetic radiation packet. The photon's energy depends on how easily the electric field and magnetic field wiggle. The frequency of the photon is high.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main