
In a conductor, if the number of conduction electrons per unit volume is $8.5 \times {10^{28}}{m^{ - 3}}$and mean free time is $25fs$(femtosecond), find out its approximate resistivity. $({m_e} = 9.1 \times {10^{ - 31}}kg)$
(A) ${10^{ - 5}}\Omega m$
(B) ${10^{ - 6}}\Omega m$
(C) ${10^{ - 7}}\Omega m$
(D) ${10^{ - 8}}\Omega m$
Answer
232.8k+ views
Hint Conductivity $\sigma = \dfrac{{n{e^2}\tau }}{m}$(Where m is the mass of electron, n is the number of density, e is the charge of an electron and $\tau $is the relaxation time or mean free time.) Resistivity $(\rho )$is the reciprocal of the conductivity $(\sigma )$.
Formula used: $\sigma = \dfrac{{n{e^2}\tau }}{m}$(Where $\sigma $is the conductivity, m is the mass of electron, n is the number of density, e is the charge of an electron and $\tau $is the relaxation time or mean free time.)
Resistivity $(\rho ) = \dfrac{1}{\sigma } = \dfrac{m}{{n{e^2}\tau }}$
Complete step by step answer
We know that current density $J = ne{v_d}$……. (i)
Now $J = \sigma E$ and ${v_d} = \dfrac{{eE\tau }}{m}$
Equation (i) can be written as,
$\sigma E = ne\left( {\dfrac{{eE}}{m}} \right)\tau $
$ \Rightarrow \sigma = \dfrac{{n{e^2}\tau }}{m}$
(Where $\sigma $ is the conductivity, m is the mass of the electron, n is the number of density, e is the charge of an electron and $\tau $is the relaxation time or mean free time.)
Now we know that resistivity $(\rho )$ is the reciprocal of the conductivity $(\sigma )$.
Therefore, resistivity $(\rho ) = \dfrac{1}{\sigma } = \dfrac{m}{{n{e^2}\tau }}$……. (ii)
Given,
mass of the electron $(m) = 9.1 \times {10^{ - 31}}kg$
number density of electron $(n) = 8.5 \times {10^{28}}{m^{ - 3}}$
mean free time $(\tau ) = 25fs = 25 \times {10^{ - 15}}s$
And we know that charge of an electron $(e) = 1.6 \times {10^{ - 19}}C$
Providing the values in equation (ii) we get,
Resistivity $(\rho ) = \dfrac{{9.1 \times {{10}^{ - 31}}}}{{8.5 \times {{10}^{28}} \times {{\left( {1.6 \times {{10}^{ - 19}}} \right)}^2} \times 25 \times {{10}^{ - 15}}}} = 1.6 \times {10^{ - 8}}\Omega m.$
Hence, the resistivity would be of the order of ${10^{ - 8}}.$
Additional Information Mean free time is also known as relaxation time. It is the average time between two successive collisions for an electron. The relaxation time of electrons in a conductor depends on the mass of the electron, the charge of the electron, the number density and the velocities of electrons and ions.
Note Whenever these types of questions appear, remember to consider the conductivity first. As we know resistivity is the reciprocal of conductivity hence, we can find resistivity easily. Always maintain the correct unit (SI or CGS). Convert all the units in either SI or CGS. Then determine the result.
Formula used: $\sigma = \dfrac{{n{e^2}\tau }}{m}$(Where $\sigma $is the conductivity, m is the mass of electron, n is the number of density, e is the charge of an electron and $\tau $is the relaxation time or mean free time.)
Resistivity $(\rho ) = \dfrac{1}{\sigma } = \dfrac{m}{{n{e^2}\tau }}$
Complete step by step answer
We know that current density $J = ne{v_d}$……. (i)
Now $J = \sigma E$ and ${v_d} = \dfrac{{eE\tau }}{m}$
Equation (i) can be written as,
$\sigma E = ne\left( {\dfrac{{eE}}{m}} \right)\tau $
$ \Rightarrow \sigma = \dfrac{{n{e^2}\tau }}{m}$
(Where $\sigma $ is the conductivity, m is the mass of the electron, n is the number of density, e is the charge of an electron and $\tau $is the relaxation time or mean free time.)
Now we know that resistivity $(\rho )$ is the reciprocal of the conductivity $(\sigma )$.
Therefore, resistivity $(\rho ) = \dfrac{1}{\sigma } = \dfrac{m}{{n{e^2}\tau }}$……. (ii)
Given,
mass of the electron $(m) = 9.1 \times {10^{ - 31}}kg$
number density of electron $(n) = 8.5 \times {10^{28}}{m^{ - 3}}$
mean free time $(\tau ) = 25fs = 25 \times {10^{ - 15}}s$
And we know that charge of an electron $(e) = 1.6 \times {10^{ - 19}}C$
Providing the values in equation (ii) we get,
Resistivity $(\rho ) = \dfrac{{9.1 \times {{10}^{ - 31}}}}{{8.5 \times {{10}^{28}} \times {{\left( {1.6 \times {{10}^{ - 19}}} \right)}^2} \times 25 \times {{10}^{ - 15}}}} = 1.6 \times {10^{ - 8}}\Omega m.$
Hence, the resistivity would be of the order of ${10^{ - 8}}.$
Additional Information Mean free time is also known as relaxation time. It is the average time between two successive collisions for an electron. The relaxation time of electrons in a conductor depends on the mass of the electron, the charge of the electron, the number density and the velocities of electrons and ions.
Note Whenever these types of questions appear, remember to consider the conductivity first. As we know resistivity is the reciprocal of conductivity hence, we can find resistivity easily. Always maintain the correct unit (SI or CGS). Convert all the units in either SI or CGS. Then determine the result.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

