In a hydroelectric power station, the height of the dam is $10m$. How many $kg$ of water must fall per second on the blades of a turbine in order to generate $1MW$of electric power?
A) ${10^3}kg{s^{ - 1}}$
B) ${10^4}kg{s^{ - 1}}$
C) ${10^5}kg{s^{ - 1}}$
D) ${10^6}kg{s^{ - 1}}$
Answer
Verified
122.7k+ views
Hint: To solve the given problem we have to consider the work done. The work done can be explained as the product of the force and the displacement. The gravitational potential energy of water will be converted into electrical energy.
Complete step by step answer:
Given, the height of the dam, $h = 10m$
Power generated,
$ \Rightarrow P = 1MW$
$ \Rightarrow 1 \times {10^6}W$
Let us consider $m$ to be the amount of water fall per second on the blades of the turbine.
Power is a ratio of work done by time taken. That is,
${\text{power = }}\dfrac{{{\text{work done}}}}{{{\text{time}}}} = \dfrac{W}{t}$ ……………. (1)
We know that the product of force and displacement is known as work completed. That is $W = F.s$ Equation (1) then becomes,
$ \Rightarrow P = \dfrac{{F.s}}{t}$
\[ \Rightarrow \dfrac{{mgh}}{t}\]
Where the height of the dam, which is $h$, is $s$. $Mg$ refers to the weight of water.
We can calculate the mass of water falling per second from the above equation, which is given by,
$ \Rightarrow \dfrac{m}{t} = \dfrac{P}{{gh}}$
By replacing the values we get,
$ \Rightarrow \dfrac{m}{t} = \dfrac{{1 \times {{10}^6}}}{{10 \times 10}}$
By using the arithmetic multiplication, we can multiply the denominator as the base number is same. We get,
$ \Rightarrow \dfrac{m}{t} = \dfrac{{1 \times {{10}^6}}}{{{{10}^2}}}$
$\therefore {10^4}kg{s^{ - 1}}$
Thus, ${10^4}kg$ of water must fall per second on the blades to generate $1MW$ of electric power.
$\therefore $ Correct option is (B).
Note: Power is defined as the rate of time at which work is carried out or energy is transferred. If $W$ is the sum of work completed in a time $t$, then the ratio of the work done $W$ to the total time t gives the average power $P$.
That is, power$P = \dfrac{W}{t}$
Here, the SI unit of work done is joule and time in second.
Therefore, unit of power will be,
Joule per second or $J{s^{ - 1}}$ which can be written as \[Watt\left( W \right)\].
Different types of units of power.
If one $joule$ per second of work is completed, the output is one $watt$.
\[{\text{1watt}}\left( {\text{W}} \right){\text{ = 1}}\dfrac{{{\text{joule}}}}{{{\text{second}}}}\]
\[1kilowatt\left( {kW} \right){\text{ }} = 1000watt\]
\[1megawatt\left( {MW} \right) = {10^6}watt\]
\[1horsepower\left( {HP} \right) = 746watts\]
Power is also referred to as the dot product of force and velocity.Power which has only magnitude and no direction.
Complete step by step answer:
Given, the height of the dam, $h = 10m$
Power generated,
$ \Rightarrow P = 1MW$
$ \Rightarrow 1 \times {10^6}W$
Let us consider $m$ to be the amount of water fall per second on the blades of the turbine.
Power is a ratio of work done by time taken. That is,
${\text{power = }}\dfrac{{{\text{work done}}}}{{{\text{time}}}} = \dfrac{W}{t}$ ……………. (1)
We know that the product of force and displacement is known as work completed. That is $W = F.s$ Equation (1) then becomes,
$ \Rightarrow P = \dfrac{{F.s}}{t}$
\[ \Rightarrow \dfrac{{mgh}}{t}\]
Where the height of the dam, which is $h$, is $s$. $Mg$ refers to the weight of water.
We can calculate the mass of water falling per second from the above equation, which is given by,
$ \Rightarrow \dfrac{m}{t} = \dfrac{P}{{gh}}$
By replacing the values we get,
$ \Rightarrow \dfrac{m}{t} = \dfrac{{1 \times {{10}^6}}}{{10 \times 10}}$
By using the arithmetic multiplication, we can multiply the denominator as the base number is same. We get,
$ \Rightarrow \dfrac{m}{t} = \dfrac{{1 \times {{10}^6}}}{{{{10}^2}}}$
$\therefore {10^4}kg{s^{ - 1}}$
Thus, ${10^4}kg$ of water must fall per second on the blades to generate $1MW$ of electric power.
$\therefore $ Correct option is (B).
Note: Power is defined as the rate of time at which work is carried out or energy is transferred. If $W$ is the sum of work completed in a time $t$, then the ratio of the work done $W$ to the total time t gives the average power $P$.
That is, power$P = \dfrac{W}{t}$
Here, the SI unit of work done is joule and time in second.
Therefore, unit of power will be,
Joule per second or $J{s^{ - 1}}$ which can be written as \[Watt\left( W \right)\].
Different types of units of power.
If one $joule$ per second of work is completed, the output is one $watt$.
\[{\text{1watt}}\left( {\text{W}} \right){\text{ = 1}}\dfrac{{{\text{joule}}}}{{{\text{second}}}}\]
\[1kilowatt\left( {kW} \right){\text{ }} = 1000watt\]
\[1megawatt\left( {MW} \right) = {10^6}watt\]
\[1horsepower\left( {HP} \right) = 746watts\]
Power is also referred to as the dot product of force and velocity.Power which has only magnitude and no direction.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line