Answer
Verified
110.4k+ views
Hint: A thermocouple has two junctions, a hot junction, and a cold junction. The temperature difference will give rise to an EMF. The EMF produced per one-degree difference in temperature is $3\mu V$. This gives the relation between emf and temperature in this particular thermocouple. Use this relation to find the temperature at the hot end.
Complete step by step solution:
From the question, we know that an emf $3\mu V$ is produced per one degree difference of temperature between the hot junction and the cold junction.
Let the temperature difference between the two junctions be ${t^ \circ }C$
The emf per unit change in temperature can be written as,
$e = at$ Where \[a = 3 \times {10^{ - 6}}\dfrac{V}{{^ \circ C}}\] ($1\mu V=$${10^{ - 6}}$$V$, To convert $\mu V$ into $V$ multiply with ${10^{-6}}$)
$a$ is the EMF produced per one-degree difference of temperature.
When the cold junction is at ${20^ \circ }C,$the emf is given as $0.3mV$ that is,
$e = 0.3 \times {10^{ - 3}}V$
$e = 3 \times {10^{ - 4}}V$
$\therefore t = \dfrac{{3 \times {{10}^{ - 4}}}}{{3 \times {{10}^{ - 6}}}} = {100^ \circ }C$
The temperature difference between the hot junction and the cold junction is found to be ${100^ \circ }C$
$\therefore $The temperature at the cold junction is $20 + t$$ = 20 + 100 = {120^ \circ }C$
The correct answer is option (C), ${120^ \circ }C.$
Note: Thermocouples are used to measure temperature. It will have two legs made of metals. At one end, there will be a junction made by welding the two legs together. The temperature is measured at this junction. There will be an emf whenever the temperature in this junction changes. Thermocouples have unique characteristics. There are various types of thermocouples available. While solving this problem one thing to be taken care of is while converting the power of emf. To convert $\mu V$ into Volt multiply with ${10^{ - 6}}$. To convert $mV$into Volt, multiply with${10^{ - 3}}$.
Complete step by step solution:
From the question, we know that an emf $3\mu V$ is produced per one degree difference of temperature between the hot junction and the cold junction.
Let the temperature difference between the two junctions be ${t^ \circ }C$
The emf per unit change in temperature can be written as,
$e = at$ Where \[a = 3 \times {10^{ - 6}}\dfrac{V}{{^ \circ C}}\] ($1\mu V=$${10^{ - 6}}$$V$, To convert $\mu V$ into $V$ multiply with ${10^{-6}}$)
$a$ is the EMF produced per one-degree difference of temperature.
When the cold junction is at ${20^ \circ }C,$the emf is given as $0.3mV$ that is,
$e = 0.3 \times {10^{ - 3}}V$
$e = 3 \times {10^{ - 4}}V$
$\therefore t = \dfrac{{3 \times {{10}^{ - 4}}}}{{3 \times {{10}^{ - 6}}}} = {100^ \circ }C$
The temperature difference between the hot junction and the cold junction is found to be ${100^ \circ }C$
$\therefore $The temperature at the cold junction is $20 + t$$ = 20 + 100 = {120^ \circ }C$
The correct answer is option (C), ${120^ \circ }C.$
Note: Thermocouples are used to measure temperature. It will have two legs made of metals. At one end, there will be a junction made by welding the two legs together. The temperature is measured at this junction. There will be an emf whenever the temperature in this junction changes. Thermocouples have unique characteristics. There are various types of thermocouples available. While solving this problem one thing to be taken care of is while converting the power of emf. To convert $\mu V$ into Volt multiply with ${10^{ - 6}}$. To convert $mV$into Volt, multiply with${10^{ - 3}}$.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main