
In the expansion of ${\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n}$ the sum of the coefficients of the terms of degree r is
$\left( A \right){\left( {{}^n{C_r}} \right)^3}$
$\left( B \right)3\left( {{}^n{C_r}} \right)$
$\left( C \right)\left( {{}^{3n}{C_r}} \right)$
$\left( D \right)\left( {{}^n{C_{3r}}} \right)$
Answer
133.2k+ views
Hint – In this particular question use the concept of Binomial theorem i.e. the expansion of ${\left( {1 + a} \right)^n}$ is given as
${\left( {1 + a} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( a \right) + {}^n{C_2}{\left( a \right)^2} + {}^n{C_3}{\left( a \right)^3} + .......... + {}^n{C_r}{\left( a \right)^r} + ....... + {}^n{C_n}{\left( a \right)^n}$ so when we multiply three terms like this so the number of terms in the expansion is 3n terms, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
According to Binomial theorem the expansion of ${\left( {1 + a} \right)^n}$ is given as,
$ \Rightarrow {\left( {1 + a} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( a \right) + {}^n{C_2}{\left( a \right)^2} + {}^n{C_3}{\left( a \right)^3} + .......... + {}^n{C_r}{\left( a \right)^r} + ....... + {}^n{C_n}{\left( a \right)^n}$
Where, r is the ${r^{th}}$ term in the expansion and n is the ${n^{th}}$ term in the expansion.
So according to this Binomial theorem expand the given equation we have,
${\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n}$
$ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( x \right) + {}^n{C_2}{\left( x \right)^2} + {}^n{C_3}{\left( x \right)^3} + .......... + {}^n{C_r}{\left( x \right)^r} + ....... + {}^n{C_n}{\left( x \right)^n}$.... (1)
$ \Rightarrow {\left( {1 + y} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( y \right) + {}^n{C_2}{\left( y \right)^2} + {}^n{C_3}{\left( y \right)^3} + .......... + {}^n{C_r}{\left( y \right)^r} + ....... + {}^n{C_n}{\left( y \right)^n}$.... (2)
$ \Rightarrow {\left( {1 + z} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( z \right) + {}^n{C_2}{\left( z \right)^2} + {}^n{C_3}{\left( z \right)^3} + .......... + {}^n{C_r}{\left( z \right)^r} + ....... + {}^n{C_n}{\left( z \right)^n}$.... (3)
Where, r is the ${r^{th}}$ term in the expansion and n is the ${n^{th}}$ term in the expansion.
Now multiply these equations we have,
$ \Rightarrow {\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n} = \left[ {{}^n{C_o} + {}^n{C_1}\left( x \right) + {}^n{C_2}{{\left( x \right)}^2} + ... + {}^n{C_r}{{\left( x \right)}^r} + ... + {}^n{C_n}{{\left( x \right)}^n}} \right]$
. \[\left[ {{}^n{C_o} + {}^n{C_1}\left( y \right) + {}^n{C_2}{{\left( y \right)}^2} + ... + {}^n{C_r}{{\left( y \right)}^r} + ... + {}^n{C_n}{{\left( y \right)}^n}} \right]\]
. $\left[ {{}^n{C_o} + {}^n{C_1}\left( z \right) + {}^n{C_2}{{\left( z \right)}^2} + ... + {}^n{C_r}{{\left( z \right)}^r} + ... + {}^n{C_n}{{\left( z \right)}^n}} \right]$
So as we see that in the expansion of ${\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n}$ each term has n terms so the total number of terms of degree r when multiplied together are 3n terms.
So the sum of the coefficient of the terms of degree r is given as
${}^{3n}{C_r}$
So this is the required answer.
Hence option (C) is the correct answer.
Note – Whenever we face such types of question the key concept we have to remember is that the expansion of ${\left( {1 + a} \right)^n}$ according to Binomial theorem which is all stated above so first write the expansion s above then multiply it together as above then the number of terms in the expansion of the given equation is 3n terms as every expansion has n terms in the expansion for example (a +b) when multiply by (c + d) gives 4 terms and every equation has 2 terms so the sum of the coefficient of the terms of degree r is ${}^{3n}{C_r}$.
${\left( {1 + a} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( a \right) + {}^n{C_2}{\left( a \right)^2} + {}^n{C_3}{\left( a \right)^3} + .......... + {}^n{C_r}{\left( a \right)^r} + ....... + {}^n{C_n}{\left( a \right)^n}$ so when we multiply three terms like this so the number of terms in the expansion is 3n terms, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
According to Binomial theorem the expansion of ${\left( {1 + a} \right)^n}$ is given as,
$ \Rightarrow {\left( {1 + a} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( a \right) + {}^n{C_2}{\left( a \right)^2} + {}^n{C_3}{\left( a \right)^3} + .......... + {}^n{C_r}{\left( a \right)^r} + ....... + {}^n{C_n}{\left( a \right)^n}$
Where, r is the ${r^{th}}$ term in the expansion and n is the ${n^{th}}$ term in the expansion.
So according to this Binomial theorem expand the given equation we have,
${\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n}$
$ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( x \right) + {}^n{C_2}{\left( x \right)^2} + {}^n{C_3}{\left( x \right)^3} + .......... + {}^n{C_r}{\left( x \right)^r} + ....... + {}^n{C_n}{\left( x \right)^n}$.... (1)
$ \Rightarrow {\left( {1 + y} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( y \right) + {}^n{C_2}{\left( y \right)^2} + {}^n{C_3}{\left( y \right)^3} + .......... + {}^n{C_r}{\left( y \right)^r} + ....... + {}^n{C_n}{\left( y \right)^n}$.... (2)
$ \Rightarrow {\left( {1 + z} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( z \right) + {}^n{C_2}{\left( z \right)^2} + {}^n{C_3}{\left( z \right)^3} + .......... + {}^n{C_r}{\left( z \right)^r} + ....... + {}^n{C_n}{\left( z \right)^n}$.... (3)
Where, r is the ${r^{th}}$ term in the expansion and n is the ${n^{th}}$ term in the expansion.
Now multiply these equations we have,
$ \Rightarrow {\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n} = \left[ {{}^n{C_o} + {}^n{C_1}\left( x \right) + {}^n{C_2}{{\left( x \right)}^2} + ... + {}^n{C_r}{{\left( x \right)}^r} + ... + {}^n{C_n}{{\left( x \right)}^n}} \right]$
. \[\left[ {{}^n{C_o} + {}^n{C_1}\left( y \right) + {}^n{C_2}{{\left( y \right)}^2} + ... + {}^n{C_r}{{\left( y \right)}^r} + ... + {}^n{C_n}{{\left( y \right)}^n}} \right]\]
. $\left[ {{}^n{C_o} + {}^n{C_1}\left( z \right) + {}^n{C_2}{{\left( z \right)}^2} + ... + {}^n{C_r}{{\left( z \right)}^r} + ... + {}^n{C_n}{{\left( z \right)}^n}} \right]$
So as we see that in the expansion of ${\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n}$ each term has n terms so the total number of terms of degree r when multiplied together are 3n terms.
So the sum of the coefficient of the terms of degree r is given as
${}^{3n}{C_r}$
So this is the required answer.
Hence option (C) is the correct answer.
Note – Whenever we face such types of question the key concept we have to remember is that the expansion of ${\left( {1 + a} \right)^n}$ according to Binomial theorem which is all stated above so first write the expansion s above then multiply it together as above then the number of terms in the expansion of the given equation is 3n terms as every expansion has n terms in the expansion for example (a +b) when multiply by (c + d) gives 4 terms and every equation has 2 terms so the sum of the coefficient of the terms of degree r is ${}^{3n}{C_r}$.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 6th Shift 2) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

The maximum number of equivalence relations on the-class-11-maths-JEE_Main

JEE Main B.Arch Cut Off Percentile 2025

Inverse Trigonometric Functions in Maths

Other Pages
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 13 Statistics

JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More
