Answer
Verified
108.9k+ views
Hint:- The rate of change of displacement with time gives the velocity. Thus if we differentiate the displacement with respect to time will give velocity. And when we differentiate the velocity with respect to time will give acceleration.
Complete Step by step answer:
If a function is described as the position of a body as a function of time, then we can differentiate it with respect to time. The first derivative gives the velocity of the body. The second derivative gives the acceleration of the body.
The equation connecting the displacement $x$ and time $t$ is given as,
${x^2} + 2x = t$
Differentiating the above equation with respect to time,
$\
\dfrac{d}{{dt}}\left( {{x^2} + 2x} \right) = \dfrac{d}{{dt}}\left( t \right) \\
2x.\dfrac{{dx}}{{dt}} + 2.\dfrac{{dx}}{{dt}} = 1 \\
\ $
Differentiating the displacement with respect to time will give the velocity.
$\
2x.v + 2.v = 1 \\
\Rightarrow 2v\left( {x + 1} \right) = 1 \\
\Rightarrow 2v = \dfrac{1}{{\left( {x + 1} \right)}} \\
\Rightarrow v = \dfrac{1}{{2\left( {x + 1} \right)}} \\
\ $
Differentiating the velocity with respect to time will give the acceleration.
That is, $a = \dfrac{{dv}}{{dt}}$
Thus calculating, we get
$\
a = \dfrac{d}{{dt}}\dfrac{1}{{2\left( {x + 1} \right)}} \\
= \dfrac{1}{2}\dfrac{d}{{dt}}\dfrac{1}{{\left( {x + 1} \right)}} \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}\dfrac{d}{{dt}}\left( {x + 1} \right) \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.\dfrac{{dx}}{{dt}} \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.v \\
\ $
Substitute the value for velocity in above expression.
$\
a = \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.\dfrac{1}{{2\left( {x + 1} \right)}} \\
= \dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}} \\
\ $
The acceleration is calculated as $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$.
The acceleration is a negative value. This implies the retardation or decrease in acceleration.
The retardation of the particle is $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$
The answer is option A
Note: The negative value of the acceleration implies the retardation. If the acceleration is positive, the velocity will increase. When the acceleration is negative, the velocity will decrease.
Complete Step by step answer:
If a function is described as the position of a body as a function of time, then we can differentiate it with respect to time. The first derivative gives the velocity of the body. The second derivative gives the acceleration of the body.
The equation connecting the displacement $x$ and time $t$ is given as,
${x^2} + 2x = t$
Differentiating the above equation with respect to time,
$\
\dfrac{d}{{dt}}\left( {{x^2} + 2x} \right) = \dfrac{d}{{dt}}\left( t \right) \\
2x.\dfrac{{dx}}{{dt}} + 2.\dfrac{{dx}}{{dt}} = 1 \\
\ $
Differentiating the displacement with respect to time will give the velocity.
$\
2x.v + 2.v = 1 \\
\Rightarrow 2v\left( {x + 1} \right) = 1 \\
\Rightarrow 2v = \dfrac{1}{{\left( {x + 1} \right)}} \\
\Rightarrow v = \dfrac{1}{{2\left( {x + 1} \right)}} \\
\ $
Differentiating the velocity with respect to time will give the acceleration.
That is, $a = \dfrac{{dv}}{{dt}}$
Thus calculating, we get
$\
a = \dfrac{d}{{dt}}\dfrac{1}{{2\left( {x + 1} \right)}} \\
= \dfrac{1}{2}\dfrac{d}{{dt}}\dfrac{1}{{\left( {x + 1} \right)}} \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}\dfrac{d}{{dt}}\left( {x + 1} \right) \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.\dfrac{{dx}}{{dt}} \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.v \\
\ $
Substitute the value for velocity in above expression.
$\
a = \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.\dfrac{1}{{2\left( {x + 1} \right)}} \\
= \dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}} \\
\ $
The acceleration is calculated as $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$.
The acceleration is a negative value. This implies the retardation or decrease in acceleration.
The retardation of the particle is $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$
The answer is option A
Note: The negative value of the acceleration implies the retardation. If the acceleration is positive, the velocity will increase. When the acceleration is negative, the velocity will decrease.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main