
In the one- dimensional motion of a particle, the relation between position $x$ and time $t$ s given by ${x^2} + 2x = t$ ( here $x > 0$ ). Choose the correct statement:
(A) The retardation of the particle is $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$
(B) The uniform acceleration of the particle is $\dfrac{1}{{{{\left( {x + 1} \right)}^3}}}$
(C) The uniform velocity of the particle is $\dfrac{1}{{{{\left( {x + 1} \right)}^3}}}$
(D) The particle has a variable acceleration of $4t + 6$
Answer
133.8k+ views
Hint:- The rate of change of displacement with time gives the velocity. Thus if we differentiate the displacement with respect to time will give velocity. And when we differentiate the velocity with respect to time will give acceleration.
Complete Step by step answer:
If a function is described as the position of a body as a function of time, then we can differentiate it with respect to time. The first derivative gives the velocity of the body. The second derivative gives the acceleration of the body.
The equation connecting the displacement $x$ and time $t$ is given as,
${x^2} + 2x = t$
Differentiating the above equation with respect to time,
$\
\dfrac{d}{{dt}}\left( {{x^2} + 2x} \right) = \dfrac{d}{{dt}}\left( t \right) \\
2x.\dfrac{{dx}}{{dt}} + 2.\dfrac{{dx}}{{dt}} = 1 \\
\ $
Differentiating the displacement with respect to time will give the velocity.
$\
2x.v + 2.v = 1 \\
\Rightarrow 2v\left( {x + 1} \right) = 1 \\
\Rightarrow 2v = \dfrac{1}{{\left( {x + 1} \right)}} \\
\Rightarrow v = \dfrac{1}{{2\left( {x + 1} \right)}} \\
\ $
Differentiating the velocity with respect to time will give the acceleration.
That is, $a = \dfrac{{dv}}{{dt}}$
Thus calculating, we get
$\
a = \dfrac{d}{{dt}}\dfrac{1}{{2\left( {x + 1} \right)}} \\
= \dfrac{1}{2}\dfrac{d}{{dt}}\dfrac{1}{{\left( {x + 1} \right)}} \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}\dfrac{d}{{dt}}\left( {x + 1} \right) \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.\dfrac{{dx}}{{dt}} \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.v \\
\ $
Substitute the value for velocity in above expression.
$\
a = \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.\dfrac{1}{{2\left( {x + 1} \right)}} \\
= \dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}} \\
\ $
The acceleration is calculated as $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$.
The acceleration is a negative value. This implies the retardation or decrease in acceleration.
The retardation of the particle is $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$
The answer is option A
Note: The negative value of the acceleration implies the retardation. If the acceleration is positive, the velocity will increase. When the acceleration is negative, the velocity will decrease.
Complete Step by step answer:
If a function is described as the position of a body as a function of time, then we can differentiate it with respect to time. The first derivative gives the velocity of the body. The second derivative gives the acceleration of the body.
The equation connecting the displacement $x$ and time $t$ is given as,
${x^2} + 2x = t$
Differentiating the above equation with respect to time,
$\
\dfrac{d}{{dt}}\left( {{x^2} + 2x} \right) = \dfrac{d}{{dt}}\left( t \right) \\
2x.\dfrac{{dx}}{{dt}} + 2.\dfrac{{dx}}{{dt}} = 1 \\
\ $
Differentiating the displacement with respect to time will give the velocity.
$\
2x.v + 2.v = 1 \\
\Rightarrow 2v\left( {x + 1} \right) = 1 \\
\Rightarrow 2v = \dfrac{1}{{\left( {x + 1} \right)}} \\
\Rightarrow v = \dfrac{1}{{2\left( {x + 1} \right)}} \\
\ $
Differentiating the velocity with respect to time will give the acceleration.
That is, $a = \dfrac{{dv}}{{dt}}$
Thus calculating, we get
$\
a = \dfrac{d}{{dt}}\dfrac{1}{{2\left( {x + 1} \right)}} \\
= \dfrac{1}{2}\dfrac{d}{{dt}}\dfrac{1}{{\left( {x + 1} \right)}} \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}\dfrac{d}{{dt}}\left( {x + 1} \right) \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.\dfrac{{dx}}{{dt}} \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.v \\
\ $
Substitute the value for velocity in above expression.
$\
a = \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.\dfrac{1}{{2\left( {x + 1} \right)}} \\
= \dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}} \\
\ $
The acceleration is calculated as $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$.
The acceleration is a negative value. This implies the retardation or decrease in acceleration.
The retardation of the particle is $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$
The answer is option A
Note: The negative value of the acceleration implies the retardation. If the acceleration is positive, the velocity will increase. When the acceleration is negative, the velocity will decrease.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
