Answer
Verified
110.4k+ views
Hint:YDSE (Young’s double slit experiment) shows both energy and matter show both wave and particle characteristics. Apply the relation between the maximum intensities and minimum intensities of the two-sources used in Young’s double slit experiment. From the equation we can ratio between the intensities of two interfering sources.
Formula used:
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
Where ${I_1}$ and ${I_{_2}}$ are the two intensities.
Complete step by step solution:
Two coherent sources of lights placed at a small distance apart are used in Young’s double slit experiment. Usually only magnitudes greater than wavelength of light is used. Young’s double slit experiment helps in understanding the wave theory of light. Commonly used coherent sources in the modern-day experiments is Laser. Young’s double slit experiment firmly establishes that light behaves as a particle and wave.
Now lets us use the formula
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
Now in the question they have mentioned that the amplitude of intensity variation of two sources is found to be 5% of the average intensity.
Let us assume the average intensity $I$ to be 100. Then ${I_{\max }}$ will be $5\% $ more than the average intensity $I$. Then ${I_{\max }} = 105$ units and ${I_{\min }}$ will be $5\% $ less than the average intensity $I$. ${I_{\min }} = 95$ units.
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
$\dfrac{{105}}{{95}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
We will the value of $\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} $is $40$
Hence$\dfrac{{{I_1}}}{{{I_2}}} = \left( {\dfrac{{{{\left( {40} \right)}^2}}}{{{{\left( 1 \right)}^2}}}} \right)$
$\dfrac{{{I_1}}}{{{I_2}}} = 1600$
Hence option (C) is the right option.
Note: Later they conducted Young’s double slit experiment using electrons and the pattern generated a similar result as light. It behaves both as a particle and wave. Young’s double slit experiment shows both these characteristics prominently.
Formula used:
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
Where ${I_1}$ and ${I_{_2}}$ are the two intensities.
Complete step by step solution:
Two coherent sources of lights placed at a small distance apart are used in Young’s double slit experiment. Usually only magnitudes greater than wavelength of light is used. Young’s double slit experiment helps in understanding the wave theory of light. Commonly used coherent sources in the modern-day experiments is Laser. Young’s double slit experiment firmly establishes that light behaves as a particle and wave.
Now lets us use the formula
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
Now in the question they have mentioned that the amplitude of intensity variation of two sources is found to be 5% of the average intensity.
Let us assume the average intensity $I$ to be 100. Then ${I_{\max }}$ will be $5\% $ more than the average intensity $I$. Then ${I_{\max }} = 105$ units and ${I_{\min }}$ will be $5\% $ less than the average intensity $I$. ${I_{\min }} = 95$ units.
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
$\dfrac{{105}}{{95}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
We will the value of $\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} $is $40$
Hence$\dfrac{{{I_1}}}{{{I_2}}} = \left( {\dfrac{{{{\left( {40} \right)}^2}}}{{{{\left( 1 \right)}^2}}}} \right)$
$\dfrac{{{I_1}}}{{{I_2}}} = 1600$
Hence option (C) is the right option.
Note: Later they conducted Young’s double slit experiment using electrons and the pattern generated a similar result as light. It behaves both as a particle and wave. Young’s double slit experiment shows both these characteristics prominently.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main