India’s Mangalyaan was sent to the mars by launching it into a transfer orbit EOM around the sun. It leaves the earth at E and meets mars at M. If the semi major axis of Earth’s orbit is ${a_e} = 1.5 \times {10^{11}}\,m$, that of Mars orbit ${a_m} = 2.28 \times {10^{11}}\,m$, taken Kepler’s laws, the estimate of time of Mangalyaan to reach from earth to be close to:
(A) $500$ days
(B) $320$ days
(C) $260$ days
(D) $220$ days
Answer
Verified
122.7k+ views
Hint: By using Kepler's law, the estimate of time of Mangalyaan to reach from the earth is determined. But in Kepler’s law the radius of the circular path is required, so the radius is determined by equating the radius of the circle to be equal to the path covered by the ellipse. Because the semi major and semi minor axis of the ellipse is the only information we have.
Formula Used:
The Kepler’s law of planetary motion is given by,
${T^2} \propto {r^3}$
Where, $T$ is the time period and $r$ is the radius of the circular orbit.
Complete step by step answer:
Given that,
The semi major axis of the Earth’s orbit is, ${a_e} = 1.5 \times {10^{11}}\,m$,
The semi major axis of the mars orbit is, ${a_m} = 2.28 \times {10^{11}}\,m$.
Now, the total semi major axis is given by,
$\Rightarrow$ $a = \dfrac{{{a_e} + {a_m}}}{2}$
By substituting the semi major axis of the earth and the semi major axis of the mars in the above equation, then
$\Rightarrow$ $a = \dfrac{{\left( {1.5 \times {{10}^{11}}} \right) + \left( {2.28 \times {{10}^{11}}} \right)}}{2}$
By adding the terms in the numerator, then the above equation is written as,
$\Rightarrow$ $a = \dfrac{{3.78 \times {{10}^{11}}}}{2}$
On dividing the above equation, then
$\Rightarrow$ $a = 1.89 \times {10^{11}}\,m$
The semi major axis is, $a = 1.89 \times {10^{11}}\,m$
Now, the semi minor axis is assumed to be, $b \simeq {a_e} = 1.5 \times {10^{11}}\,m$
Consider that the circle whose area is equal to the path covered by the ellipse, then
$\Rightarrow$ $\pi {R^2} = \dfrac{{\pi ab}}{2}$
By cancelling the same terms on both sides, then
$\Rightarrow$ ${R^2} = \dfrac{{ab}}{2}$
By taking the square root on both sides, then
$\Rightarrow$ $R = \sqrt {\dfrac{{ab}}{2}} $
Substituting the semi major and semi minor axis values in the above equation, then
$\Rightarrow$ $R = \sqrt {\dfrac{{1.89 \times {{10}^{11}} \times 1.5 \times {{10}^{11}}}}{2}} $
On multiplying the above equation, then
$\Rightarrow$ $R = \sqrt {\dfrac{{2.835 \times {{10}^{22}}}}{2}} $
On dividing the above equation, then
$\Rightarrow$ $R = \sqrt {1.4175 \times {{10}^{22}}} $
By taking the square root on both sides, then
$\Rightarrow$ $R = 1.19 \times {10^{11}}\,m$
By using the Kepler’s law,
$\Rightarrow$ ${T^2} \propto {r^3}$
The above equation is written as,
$\Rightarrow$ ${\left( {\dfrac{T}{{365}}} \right)^2} = {\left( {\dfrac{R}{{{a_e}}}} \right)^3}\,....................\left( 1 \right)$
By substituting values in the above equation, then
$\Rightarrow$ ${\left( {\dfrac{T}{{365}}} \right)^2} = {\left( {\dfrac{{1.19 \times {{10}^{11}}}}{{1.5 \times {{10}^{11}}}}} \right)^3}$
By cancelling the same terms, then
$\Rightarrow$ ${\left( {\dfrac{T}{{365}}} \right)^2} = {\left( {\dfrac{{1.19}}{{1.5}}} \right)^3}$
On dividing the terms in RHS, then
$\Rightarrow$ ${\left( {\dfrac{T}{{365}}} \right)^2} = {\left( {0.793} \right)^3}$
Taking cube on RHS, then
$\Rightarrow$ ${\left( {\dfrac{T}{{365}}} \right)^2} = 0.499$
By keeping $T$ on one side and the other terms in other side, then
$\Rightarrow$ ${T^2} = 0.499 \times {\left( {365} \right)^2}$
On squaring and multiplying the terms in RHS, then
$\Rightarrow$ ${T^2} = 66520.09$
By taking square root on both sides, then
$\Rightarrow$ $T = 257.9$
The above equation is written as,
$T \simeq 260\,days$
Hence, the option (C) is the correct answer.
Note: In the equation (1), the time period is divided by the $365$ days because it is the days of one year and the radius is divided by the ${a_e}$ because it is the semi minor axis and also for the easy and the further calculation. And after by simplifying the time taken is determined.
Formula Used:
The Kepler’s law of planetary motion is given by,
${T^2} \propto {r^3}$
Where, $T$ is the time period and $r$ is the radius of the circular orbit.
Complete step by step answer:
Given that,
The semi major axis of the Earth’s orbit is, ${a_e} = 1.5 \times {10^{11}}\,m$,
The semi major axis of the mars orbit is, ${a_m} = 2.28 \times {10^{11}}\,m$.
Now, the total semi major axis is given by,
$\Rightarrow$ $a = \dfrac{{{a_e} + {a_m}}}{2}$
By substituting the semi major axis of the earth and the semi major axis of the mars in the above equation, then
$\Rightarrow$ $a = \dfrac{{\left( {1.5 \times {{10}^{11}}} \right) + \left( {2.28 \times {{10}^{11}}} \right)}}{2}$
By adding the terms in the numerator, then the above equation is written as,
$\Rightarrow$ $a = \dfrac{{3.78 \times {{10}^{11}}}}{2}$
On dividing the above equation, then
$\Rightarrow$ $a = 1.89 \times {10^{11}}\,m$
The semi major axis is, $a = 1.89 \times {10^{11}}\,m$
Now, the semi minor axis is assumed to be, $b \simeq {a_e} = 1.5 \times {10^{11}}\,m$
Consider that the circle whose area is equal to the path covered by the ellipse, then
$\Rightarrow$ $\pi {R^2} = \dfrac{{\pi ab}}{2}$
By cancelling the same terms on both sides, then
$\Rightarrow$ ${R^2} = \dfrac{{ab}}{2}$
By taking the square root on both sides, then
$\Rightarrow$ $R = \sqrt {\dfrac{{ab}}{2}} $
Substituting the semi major and semi minor axis values in the above equation, then
$\Rightarrow$ $R = \sqrt {\dfrac{{1.89 \times {{10}^{11}} \times 1.5 \times {{10}^{11}}}}{2}} $
On multiplying the above equation, then
$\Rightarrow$ $R = \sqrt {\dfrac{{2.835 \times {{10}^{22}}}}{2}} $
On dividing the above equation, then
$\Rightarrow$ $R = \sqrt {1.4175 \times {{10}^{22}}} $
By taking the square root on both sides, then
$\Rightarrow$ $R = 1.19 \times {10^{11}}\,m$
By using the Kepler’s law,
$\Rightarrow$ ${T^2} \propto {r^3}$
The above equation is written as,
$\Rightarrow$ ${\left( {\dfrac{T}{{365}}} \right)^2} = {\left( {\dfrac{R}{{{a_e}}}} \right)^3}\,....................\left( 1 \right)$
By substituting values in the above equation, then
$\Rightarrow$ ${\left( {\dfrac{T}{{365}}} \right)^2} = {\left( {\dfrac{{1.19 \times {{10}^{11}}}}{{1.5 \times {{10}^{11}}}}} \right)^3}$
By cancelling the same terms, then
$\Rightarrow$ ${\left( {\dfrac{T}{{365}}} \right)^2} = {\left( {\dfrac{{1.19}}{{1.5}}} \right)^3}$
On dividing the terms in RHS, then
$\Rightarrow$ ${\left( {\dfrac{T}{{365}}} \right)^2} = {\left( {0.793} \right)^3}$
Taking cube on RHS, then
$\Rightarrow$ ${\left( {\dfrac{T}{{365}}} \right)^2} = 0.499$
By keeping $T$ on one side and the other terms in other side, then
$\Rightarrow$ ${T^2} = 0.499 \times {\left( {365} \right)^2}$
On squaring and multiplying the terms in RHS, then
$\Rightarrow$ ${T^2} = 66520.09$
By taking square root on both sides, then
$\Rightarrow$ $T = 257.9$
The above equation is written as,
$T \simeq 260\,days$
Hence, the option (C) is the correct answer.
Note: In the equation (1), the time period is divided by the $365$ days because it is the days of one year and the radius is divided by the ${a_e}$ because it is the semi minor axis and also for the easy and the further calculation. And after by simplifying the time taken is determined.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line