Answer
Verified
110.7k+ views
Hint: Here, we need to solve the given integral by substitution method and then simplifying the given integral and then the use of the required formulae of integration.
Complete step-by-step answer:
Let $I = \int {\dfrac{{dx}}{{{2^x} - 1}}} $
Let ${2^x} - 1 = t$
Differentiate it w.r.t x
$
\Rightarrow \dfrac{{d({2^x} - 1)}}{{dx}} = \dfrac{{dt}}{{dx}} \\
\Rightarrow \ln 2 \times {2^x}dx = dt \\
\Rightarrow dx = \dfrac{{dt}}{{{2^x}\ln 2}}{\text{ & }}{{\text{2}}^x} = t + 1 \\
\Rightarrow dx = \dfrac{{dt}}{{(t + 1)\ln 2}} \\
$
Now substitute this value in the integral
$I = \int {\dfrac{1}{t}\dfrac{{dt}}{{(t + 1)\ln 2}}} $
Now apply partial fraction for $\dfrac{1}{{t(t + 1)}}$
$ = \dfrac{1}{{\ln 2}}\int {\left( {\dfrac{1}{t} - \dfrac{1}{{t + 1}}} \right)} dt$
Now apply integration
$
= \dfrac{1}{{\ln 2}}[\ln t - \ln (t + 1)] + c \\
= \dfrac{1}{{\ln 2}}[\ln \dfrac{t}{{t + 1}}] + c \\
$
Substitute the value of $t = {2^x} - 1$
$
= \dfrac{1}{{\ln 2}}\left[ {\ln \dfrac{{({2^x} - 1)}}{{{2^x}}}} \right] + c \\
\Rightarrow \dfrac{{\ln (1 - {2^{ - x}})}}{{\ln 2}} + c \\
$
Therefore, option B is correct.
Note: Integrals can be simplified to standard form by substitution techniques which can be easily evaluated using the standard integration formulas.
Complete step-by-step answer:
Let $I = \int {\dfrac{{dx}}{{{2^x} - 1}}} $
Let ${2^x} - 1 = t$
Differentiate it w.r.t x
$
\Rightarrow \dfrac{{d({2^x} - 1)}}{{dx}} = \dfrac{{dt}}{{dx}} \\
\Rightarrow \ln 2 \times {2^x}dx = dt \\
\Rightarrow dx = \dfrac{{dt}}{{{2^x}\ln 2}}{\text{ & }}{{\text{2}}^x} = t + 1 \\
\Rightarrow dx = \dfrac{{dt}}{{(t + 1)\ln 2}} \\
$
Now substitute this value in the integral
$I = \int {\dfrac{1}{t}\dfrac{{dt}}{{(t + 1)\ln 2}}} $
Now apply partial fraction for $\dfrac{1}{{t(t + 1)}}$
$ = \dfrac{1}{{\ln 2}}\int {\left( {\dfrac{1}{t} - \dfrac{1}{{t + 1}}} \right)} dt$
Now apply integration
$
= \dfrac{1}{{\ln 2}}[\ln t - \ln (t + 1)] + c \\
= \dfrac{1}{{\ln 2}}[\ln \dfrac{t}{{t + 1}}] + c \\
$
Substitute the value of $t = {2^x} - 1$
$
= \dfrac{1}{{\ln 2}}\left[ {\ln \dfrac{{({2^x} - 1)}}{{{2^x}}}} \right] + c \\
\Rightarrow \dfrac{{\ln (1 - {2^{ - x}})}}{{\ln 2}} + c \\
$
Therefore, option B is correct.
Note: Integrals can be simplified to standard form by substitution techniques which can be easily evaluated using the standard integration formulas.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main