
Let ${{f}_{1}}\text{ }:\text{ }R\text{ }\to R,{{f}_{2}}\text{ }:\left( -\pi /2,\pi /2 \right)\to R,\text{ }{{f}_{2}}\text{ }:\text{ }\left( -1,\text{ }{{e}^{\dfrac{_{\pi }}{2}}}-2 \right)\to R$ and
${{f}_{4}}\text{ }:\text{ }R\to ~R\ $ be functions defined by\[\]
(i) ${{f}_{1}}(x)=\sin (\sqrt{1-{{e}^{-{{x}^{2}}}}})$\[\]
(ii) ${{f}_{2}}\left( x \right)=\left\{ \begin{matrix}
\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x},\text{if }x\ne 0, \\
1,\text{if }x=0 \\
\end{matrix} \right.$ where the inverse trigonometric function ${{\tan }^{-1}}x$ assumes values $\left( -\pi /2,\pi /2 \right)$ . \[\]
(iii) $ {{f}_{3}}\left( x \right)=\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]$ where, for $ t\in ~R,\text{ }\left[ t \right]$ denotes the greatest integer less than or equal to is $t$\[\]
(iv) ${{f}_{4}}\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}\sin \left( \dfrac{1}{x} \right) & ,x\ne 0 \\
0 & ,x=0 \\
\end{matrix} \right.$\[\]
List-I
P. The function ${{f}_{1}}$\[\]
Q. The function ${{f}_{2}}$\[\]
R. The function ${{f}_{3}}$\[\]
S. The function ${{f}_{4}}$\[\]
List-II:\[\]
1. NOT continuous at $x=0$\[\]
2. Continuous at $x=0$ and NOT differentiable at $x=0$
3. Differentiable at $x=0$ and its derivative is NOT continuous at $x=0$.\[\]
4. Differentiable at $x=0$ its derivative is continuous at $x=0$.\[\]
Choose the correct option:\[\]
A.$P\to 2,Q\to 3,R\to 1,S\to 4$\[\]
B. $P\to 4,Q\to 1,R\to 2,S\to 3$\[\]
C. $P\to 4,Q\to 2,R\to 1,S\to 3$\[\]
D. $P\to 2,Q\to 1,R\to 4,S\to 3$\[\]
Answer
232.8k+ views
Hint: Use the definition of continuity and differentiability at any point on the basis of limits. Calculate the left hand limit, the right hand limit , the left hand derivative and right hand derivative of all the functions to reach the correct result.\[\]
Complete step-by-step answer:
We know that if a function $f\left( x \right)$ is continuous at any point $x=a$ then if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at $x=a$. In symbols,
\[\begin{align}
& \text{LHL}=\text{RHL=}f\left( a \right) \\
& \Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right) \\
\end{align}\]
The function $f\left( x \right)$ is differentiable at $x=a$ if and only if $f\left( x \right)$ is continuous and Left hand derivative (LHD)=Right Hand Derivative
\[\begin{align}
& \text{LHD}=\text{RHD} \\
& \Rightarrow \underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h} \\
\end{align}\]
(i) The first function is given by ${{f}_{1}}(x)=\sin (\sqrt{1-{{e}^{-{{x}^{2}}}}})$. Testing for continuity at $x=0$,
\[\text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,(\sqrt{1-{{e}^{-{{x}^{2}}}}})=\text{RHL}=f\left( 0 \right)\]
So ${{f}_{1}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{-h}=-1 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{h}=1 \\
\end{align}\]
So ${{f}_{1}}$ is not differentiable at $x=0$. So $P\to 2$\[\]
(ii) The first function is given by\[{{f}_{2}}\left( x \right)=\left\{ \begin{matrix}
\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x},\text{if }x\ne 0, \\
1,\text{if }x=0 \\
\end{matrix} \right.\]. Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{-\sin \left( -h \right)}{{{\tan }^{-}}\left( -h \right)}=-1 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{\sin \left( h \right)}{{{\tan }^{-}}\left( h \right)}=1 \\
\end{align}\]
As LHL and RHL are not same , ${{f}_{2}}$ is not continuous at $x=0$. So $Q\to 2$.\[\]
(iii) The third function is given by \[{{f}_{3}}\left( x \right)=\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]\] . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& {{f}_{3}}\left( 0 \right)=\left[ \sin \left( {{\log }_{e}}\left( \text{0 }+\text{ }2 \right) \right) \right]=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{-h }+\text{ }2 \right) \right) \right]}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{h }+\text{ }2 \right) \right) \right]}{h}=0 \\
\end{align}\]
So ${{f}_{3}}$ is differentiable at $x=0$ and also ${{f}_{3}}^{'}\left( x \right)$ is differentiable in neighbourhood differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is continuous at $x=0$. So $R\to 4$ \[\]
(iv) The last function is given by ${{f}_{4}}\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}\sin \left( \dfrac{1}{x} \right) & ,x\ne 0 \\
0 & ,x=0 \\
\end{matrix} \right.$ . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)==0 \\
& {{f}_{3}}\left( 0 \right)=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( -\dfrac{1}{h} \right)}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( \dfrac{1}{h} \right)}{h}=0 \\
\end{align}\]
So ${{f}_{4}}$ is differentiable at $x=0$ and also ${{f}_{4}}^{'}\left( 0 \right)$ is not differentiable everywhere in the neighborhood of differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is not differentiable at $x=0$. So $R\to 4$ \[\]
So, the correct answer is “Option D”.
Note: We need to be careful of calculation and substitution which will lead us to the correct result. We need to take care of the negative and positive signs while finding left and right hand derivatives because they are going to be critical if the modulus function is involved.
Complete step-by-step answer:
We know that if a function $f\left( x \right)$ is continuous at any point $x=a$ then if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at $x=a$. In symbols,
\[\begin{align}
& \text{LHL}=\text{RHL=}f\left( a \right) \\
& \Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right) \\
\end{align}\]
The function $f\left( x \right)$ is differentiable at $x=a$ if and only if $f\left( x \right)$ is continuous and Left hand derivative (LHD)=Right Hand Derivative
\[\begin{align}
& \text{LHD}=\text{RHD} \\
& \Rightarrow \underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h} \\
\end{align}\]
(i) The first function is given by ${{f}_{1}}(x)=\sin (\sqrt{1-{{e}^{-{{x}^{2}}}}})$. Testing for continuity at $x=0$,
\[\text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,(\sqrt{1-{{e}^{-{{x}^{2}}}}})=\text{RHL}=f\left( 0 \right)\]
So ${{f}_{1}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{-h}=-1 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{h}=1 \\
\end{align}\]
So ${{f}_{1}}$ is not differentiable at $x=0$. So $P\to 2$\[\]
(ii) The first function is given by\[{{f}_{2}}\left( x \right)=\left\{ \begin{matrix}
\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x},\text{if }x\ne 0, \\
1,\text{if }x=0 \\
\end{matrix} \right.\]. Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{-\sin \left( -h \right)}{{{\tan }^{-}}\left( -h \right)}=-1 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{\sin \left( h \right)}{{{\tan }^{-}}\left( h \right)}=1 \\
\end{align}\]
As LHL and RHL are not same , ${{f}_{2}}$ is not continuous at $x=0$. So $Q\to 2$.\[\]
(iii) The third function is given by \[{{f}_{3}}\left( x \right)=\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]\] . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& {{f}_{3}}\left( 0 \right)=\left[ \sin \left( {{\log }_{e}}\left( \text{0 }+\text{ }2 \right) \right) \right]=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{-h }+\text{ }2 \right) \right) \right]}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{h }+\text{ }2 \right) \right) \right]}{h}=0 \\
\end{align}\]
So ${{f}_{3}}$ is differentiable at $x=0$ and also ${{f}_{3}}^{'}\left( x \right)$ is differentiable in neighbourhood differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is continuous at $x=0$. So $R\to 4$ \[\]
(iv) The last function is given by ${{f}_{4}}\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}\sin \left( \dfrac{1}{x} \right) & ,x\ne 0 \\
0 & ,x=0 \\
\end{matrix} \right.$ . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)==0 \\
& {{f}_{3}}\left( 0 \right)=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( -\dfrac{1}{h} \right)}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( \dfrac{1}{h} \right)}{h}=0 \\
\end{align}\]
So ${{f}_{4}}$ is differentiable at $x=0$ and also ${{f}_{4}}^{'}\left( 0 \right)$ is not differentiable everywhere in the neighborhood of differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is not differentiable at $x=0$. So $R\to 4$ \[\]
So, the correct answer is “Option D”.
Note: We need to be careful of calculation and substitution which will lead us to the correct result. We need to take care of the negative and positive signs while finding left and right hand derivatives because they are going to be critical if the modulus function is involved.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

