Let ${{f}_{1}}\text{ }:\text{ }R\text{ }\to R,{{f}_{2}}\text{ }:\left( -\pi /2,\pi /2 \right)\to R,\text{ }{{f}_{2}}\text{ }:\text{ }\left( -1,\text{ }{{e}^{\dfrac{_{\pi }}{2}}}-2 \right)\to R$ and
${{f}_{4}}\text{ }:\text{ }R\to ~R\ $ be functions defined by\[\]
(i) ${{f}_{1}}(x)=\sin (\sqrt{1-{{e}^{-{{x}^{2}}}}})$\[\]
(ii) ${{f}_{2}}\left( x \right)=\left\{ \begin{matrix}
\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x},\text{if }x\ne 0, \\
1,\text{if }x=0 \\
\end{matrix} \right.$ where the inverse trigonometric function ${{\tan }^{-1}}x$ assumes values $\left( -\pi /2,\pi /2 \right)$ . \[\]
(iii) $ {{f}_{3}}\left( x \right)=\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]$ where, for $ t\in ~R,\text{ }\left[ t \right]$ denotes the greatest integer less than or equal to is $t$\[\]
(iv) ${{f}_{4}}\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}\sin \left( \dfrac{1}{x} \right) & ,x\ne 0 \\
0 & ,x=0 \\
\end{matrix} \right.$\[\]
List-I
P. The function ${{f}_{1}}$\[\]
Q. The function ${{f}_{2}}$\[\]
R. The function ${{f}_{3}}$\[\]
S. The function ${{f}_{4}}$\[\]
List-II:\[\]
1. NOT continuous at $x=0$\[\]
2. Continuous at $x=0$ and NOT differentiable at $x=0$
3. Differentiable at $x=0$ and its derivative is NOT continuous at $x=0$.\[\]
4. Differentiable at $x=0$ its derivative is continuous at $x=0$.\[\]
Choose the correct option:\[\]
A.$P\to 2,Q\to 3,R\to 1,S\to 4$\[\]
B. $P\to 4,Q\to 1,R\to 2,S\to 3$\[\]
C. $P\to 4,Q\to 2,R\to 1,S\to 3$\[\]
D. $P\to 2,Q\to 1,R\to 4,S\to 3$\[\]
Answer
Verified
122.7k+ views
Hint: Use the definition of continuity and differentiability at any point on the basis of limits. Calculate the left hand limit, the right hand limit , the left hand derivative and right hand derivative of all the functions to reach the correct result.\[\]
Complete step-by-step answer:
We know that if a function $f\left( x \right)$ is continuous at any point $x=a$ then if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at $x=a$. In symbols,
\[\begin{align}
& \text{LHL}=\text{RHL=}f\left( a \right) \\
& \Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right) \\
\end{align}\]
The function $f\left( x \right)$ is differentiable at $x=a$ if and only if $f\left( x \right)$ is continuous and Left hand derivative (LHD)=Right Hand Derivative
\[\begin{align}
& \text{LHD}=\text{RHD} \\
& \Rightarrow \underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h} \\
\end{align}\]
(i) The first function is given by ${{f}_{1}}(x)=\sin (\sqrt{1-{{e}^{-{{x}^{2}}}}})$. Testing for continuity at $x=0$,
\[\text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,(\sqrt{1-{{e}^{-{{x}^{2}}}}})=\text{RHL}=f\left( 0 \right)\]
So ${{f}_{1}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{-h}=-1 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{h}=1 \\
\end{align}\]
So ${{f}_{1}}$ is not differentiable at $x=0$. So $P\to 2$\[\]
(ii) The first function is given by\[{{f}_{2}}\left( x \right)=\left\{ \begin{matrix}
\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x},\text{if }x\ne 0, \\
1,\text{if }x=0 \\
\end{matrix} \right.\]. Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{-\sin \left( -h \right)}{{{\tan }^{-}}\left( -h \right)}=-1 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{\sin \left( h \right)}{{{\tan }^{-}}\left( h \right)}=1 \\
\end{align}\]
As LHL and RHL are not same , ${{f}_{2}}$ is not continuous at $x=0$. So $Q\to 2$.\[\]
(iii) The third function is given by \[{{f}_{3}}\left( x \right)=\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]\] . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& {{f}_{3}}\left( 0 \right)=\left[ \sin \left( {{\log }_{e}}\left( \text{0 }+\text{ }2 \right) \right) \right]=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{-h }+\text{ }2 \right) \right) \right]}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{h }+\text{ }2 \right) \right) \right]}{h}=0 \\
\end{align}\]
So ${{f}_{3}}$ is differentiable at $x=0$ and also ${{f}_{3}}^{'}\left( x \right)$ is differentiable in neighbourhood differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is continuous at $x=0$. So $R\to 4$ \[\]
(iv) The last function is given by ${{f}_{4}}\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}\sin \left( \dfrac{1}{x} \right) & ,x\ne 0 \\
0 & ,x=0 \\
\end{matrix} \right.$ . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)==0 \\
& {{f}_{3}}\left( 0 \right)=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( -\dfrac{1}{h} \right)}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( \dfrac{1}{h} \right)}{h}=0 \\
\end{align}\]
So ${{f}_{4}}$ is differentiable at $x=0$ and also ${{f}_{4}}^{'}\left( 0 \right)$ is not differentiable everywhere in the neighborhood of differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is not differentiable at $x=0$. So $R\to 4$ \[\]
So, the correct answer is “Option D”.
Note: We need to be careful of calculation and substitution which will lead us to the correct result. We need to take care of the negative and positive signs while finding left and right hand derivatives because they are going to be critical if the modulus function is involved.
Complete step-by-step answer:
We know that if a function $f\left( x \right)$ is continuous at any point $x=a$ then if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at $x=a$. In symbols,
\[\begin{align}
& \text{LHL}=\text{RHL=}f\left( a \right) \\
& \Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right) \\
\end{align}\]
The function $f\left( x \right)$ is differentiable at $x=a$ if and only if $f\left( x \right)$ is continuous and Left hand derivative (LHD)=Right Hand Derivative
\[\begin{align}
& \text{LHD}=\text{RHD} \\
& \Rightarrow \underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h} \\
\end{align}\]
(i) The first function is given by ${{f}_{1}}(x)=\sin (\sqrt{1-{{e}^{-{{x}^{2}}}}})$. Testing for continuity at $x=0$,
\[\text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,(\sqrt{1-{{e}^{-{{x}^{2}}}}})=\text{RHL}=f\left( 0 \right)\]
So ${{f}_{1}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{-h}=-1 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{h}=1 \\
\end{align}\]
So ${{f}_{1}}$ is not differentiable at $x=0$. So $P\to 2$\[\]
(ii) The first function is given by\[{{f}_{2}}\left( x \right)=\left\{ \begin{matrix}
\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x},\text{if }x\ne 0, \\
1,\text{if }x=0 \\
\end{matrix} \right.\]. Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{-\sin \left( -h \right)}{{{\tan }^{-}}\left( -h \right)}=-1 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{\sin \left( h \right)}{{{\tan }^{-}}\left( h \right)}=1 \\
\end{align}\]
As LHL and RHL are not same , ${{f}_{2}}$ is not continuous at $x=0$. So $Q\to 2$.\[\]
(iii) The third function is given by \[{{f}_{3}}\left( x \right)=\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]\] . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& {{f}_{3}}\left( 0 \right)=\left[ \sin \left( {{\log }_{e}}\left( \text{0 }+\text{ }2 \right) \right) \right]=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{-h }+\text{ }2 \right) \right) \right]}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{h }+\text{ }2 \right) \right) \right]}{h}=0 \\
\end{align}\]
So ${{f}_{3}}$ is differentiable at $x=0$ and also ${{f}_{3}}^{'}\left( x \right)$ is differentiable in neighbourhood differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is continuous at $x=0$. So $R\to 4$ \[\]
(iv) The last function is given by ${{f}_{4}}\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}\sin \left( \dfrac{1}{x} \right) & ,x\ne 0 \\
0 & ,x=0 \\
\end{matrix} \right.$ . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)==0 \\
& {{f}_{3}}\left( 0 \right)=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( -\dfrac{1}{h} \right)}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( \dfrac{1}{h} \right)}{h}=0 \\
\end{align}\]
So ${{f}_{4}}$ is differentiable at $x=0$ and also ${{f}_{4}}^{'}\left( 0 \right)$ is not differentiable everywhere in the neighborhood of differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is not differentiable at $x=0$. So $R\to 4$ \[\]
So, the correct answer is “Option D”.
Note: We need to be careful of calculation and substitution which will lead us to the correct result. We need to take care of the negative and positive signs while finding left and right hand derivatives because they are going to be critical if the modulus function is involved.
Recently Updated Pages
The real roots of the equation x23 + x13 2 0 are A class 11 maths JEE_Main
Find the reminder when 798 is divided by 5 class 11 maths JEE_Main
Let A and B be two sets containing 2 elements and 4 class 11 maths JEE_Main
A ray of light moving parallel to the xaxis gets reflected class 11 maths JEE_Main
A man on the top of a vertical observation tower o-class-11-maths-JEE_Main
If there are 25 railway stations on a railway line class 11 maths JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics