Answer
Verified
108.9k+ views
Hint: Use the definition of continuity and differentiability at any point on the basis of limits. Calculate the left hand limit, the right hand limit , the left hand derivative and right hand derivative of all the functions to reach the correct result.\[\]
Complete step-by-step answer:
We know that if a function $f\left( x \right)$ is continuous at any point $x=a$ then if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at $x=a$. In symbols,
\[\begin{align}
& \text{LHL}=\text{RHL=}f\left( a \right) \\
& \Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right) \\
\end{align}\]
The function $f\left( x \right)$ is differentiable at $x=a$ if and only if $f\left( x \right)$ is continuous and Left hand derivative (LHD)=Right Hand Derivative
\[\begin{align}
& \text{LHD}=\text{RHD} \\
& \Rightarrow \underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h} \\
\end{align}\]
(i) The first function is given by ${{f}_{1}}(x)=\sin (\sqrt{1-{{e}^{-{{x}^{2}}}}})$. Testing for continuity at $x=0$,
\[\text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,(\sqrt{1-{{e}^{-{{x}^{2}}}}})=\text{RHL}=f\left( 0 \right)\]
So ${{f}_{1}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{-h}=-1 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{h}=1 \\
\end{align}\]
So ${{f}_{1}}$ is not differentiable at $x=0$. So $P\to 2$\[\]
(ii) The first function is given by\[{{f}_{2}}\left( x \right)=\left\{ \begin{matrix}
\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x},\text{if }x\ne 0, \\
1,\text{if }x=0 \\
\end{matrix} \right.\]. Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{-\sin \left( -h \right)}{{{\tan }^{-}}\left( -h \right)}=-1 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{\sin \left( h \right)}{{{\tan }^{-}}\left( h \right)}=1 \\
\end{align}\]
As LHL and RHL are not same , ${{f}_{2}}$ is not continuous at $x=0$. So $Q\to 2$.\[\]
(iii) The third function is given by \[{{f}_{3}}\left( x \right)=\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]\] . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& {{f}_{3}}\left( 0 \right)=\left[ \sin \left( {{\log }_{e}}\left( \text{0 }+\text{ }2 \right) \right) \right]=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{-h }+\text{ }2 \right) \right) \right]}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{h }+\text{ }2 \right) \right) \right]}{h}=0 \\
\end{align}\]
So ${{f}_{3}}$ is differentiable at $x=0$ and also ${{f}_{3}}^{'}\left( x \right)$ is differentiable in neighbourhood differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is continuous at $x=0$. So $R\to 4$ \[\]
(iv) The last function is given by ${{f}_{4}}\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}\sin \left( \dfrac{1}{x} \right) & ,x\ne 0 \\
0 & ,x=0 \\
\end{matrix} \right.$ . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)==0 \\
& {{f}_{3}}\left( 0 \right)=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( -\dfrac{1}{h} \right)}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( \dfrac{1}{h} \right)}{h}=0 \\
\end{align}\]
So ${{f}_{4}}$ is differentiable at $x=0$ and also ${{f}_{4}}^{'}\left( 0 \right)$ is not differentiable everywhere in the neighborhood of differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is not differentiable at $x=0$. So $R\to 4$ \[\]
So, the correct answer is “Option D”.
Note: We need to be careful of calculation and substitution which will lead us to the correct result. We need to take care of the negative and positive signs while finding left and right hand derivatives because they are going to be critical if the modulus function is involved.
Complete step-by-step answer:
We know that if a function $f\left( x \right)$ is continuous at any point $x=a$ then if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at $x=a$. In symbols,
\[\begin{align}
& \text{LHL}=\text{RHL=}f\left( a \right) \\
& \Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right) \\
\end{align}\]
The function $f\left( x \right)$ is differentiable at $x=a$ if and only if $f\left( x \right)$ is continuous and Left hand derivative (LHD)=Right Hand Derivative
\[\begin{align}
& \text{LHD}=\text{RHD} \\
& \Rightarrow \underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h} \\
\end{align}\]
(i) The first function is given by ${{f}_{1}}(x)=\sin (\sqrt{1-{{e}^{-{{x}^{2}}}}})$. Testing for continuity at $x=0$,
\[\text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,(\sqrt{1-{{e}^{-{{x}^{2}}}}})=\text{RHL}=f\left( 0 \right)\]
So ${{f}_{1}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{-h}=-1 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{h}=1 \\
\end{align}\]
So ${{f}_{1}}$ is not differentiable at $x=0$. So $P\to 2$\[\]
(ii) The first function is given by\[{{f}_{2}}\left( x \right)=\left\{ \begin{matrix}
\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x},\text{if }x\ne 0, \\
1,\text{if }x=0 \\
\end{matrix} \right.\]. Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{-\sin \left( -h \right)}{{{\tan }^{-}}\left( -h \right)}=-1 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{\sin \left( h \right)}{{{\tan }^{-}}\left( h \right)}=1 \\
\end{align}\]
As LHL and RHL are not same , ${{f}_{2}}$ is not continuous at $x=0$. So $Q\to 2$.\[\]
(iii) The third function is given by \[{{f}_{3}}\left( x \right)=\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]\] . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& {{f}_{3}}\left( 0 \right)=\left[ \sin \left( {{\log }_{e}}\left( \text{0 }+\text{ }2 \right) \right) \right]=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{-h }+\text{ }2 \right) \right) \right]}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{h }+\text{ }2 \right) \right) \right]}{h}=0 \\
\end{align}\]
So ${{f}_{3}}$ is differentiable at $x=0$ and also ${{f}_{3}}^{'}\left( x \right)$ is differentiable in neighbourhood differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is continuous at $x=0$. So $R\to 4$ \[\]
(iv) The last function is given by ${{f}_{4}}\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}\sin \left( \dfrac{1}{x} \right) & ,x\ne 0 \\
0 & ,x=0 \\
\end{matrix} \right.$ . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)==0 \\
& {{f}_{3}}\left( 0 \right)=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( -\dfrac{1}{h} \right)}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( \dfrac{1}{h} \right)}{h}=0 \\
\end{align}\]
So ${{f}_{4}}$ is differentiable at $x=0$ and also ${{f}_{4}}^{'}\left( 0 \right)$ is not differentiable everywhere in the neighborhood of differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is not differentiable at $x=0$. So $R\to 4$ \[\]
So, the correct answer is “Option D”.
Note: We need to be careful of calculation and substitution which will lead us to the correct result. We need to take care of the negative and positive signs while finding left and right hand derivatives because they are going to be critical if the modulus function is involved.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main