Let $f(x)=\mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{{n^n}(x + n)(x + \dfrac{n}{2}).....(x + \dfrac{n}{n})}}{{n!({x^2} + {n^2})({x^2} + \dfrac{{{n^2}}}{4}).....({x^2} + \dfrac{{{n^2}}}{{{n^2}}})}}} \right)^{\dfrac{x}{n}}}$, for all $x > 0$. Then:
A) $f(\dfrac{1}{2}) \geqslant f(1) \\$
B) $f(\dfrac{1}{3}) \leqslant f(\dfrac{2}{3}) \\$
C) ${f'}(2) \leqslant 0 \\$
D) $\dfrac{{{f'}(3)}}{{f(3)}} \geqslant \dfrac{{{f'}(2)}}{{f(2)}} \\$
Answer
Verified
122.7k+ views
Hint: In this differential equation problem, first of all, we shall have to simplify the expression given by taking out common factors cancelling them. After that we will put the values given in the options to check which option (s) is (are) correct.
Complete step by step answer:
Firstly, rewrite the expression given in the question in the following way,
$f(x) = \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{{n^n}(x + n)(x + \dfrac{n}{2}).....(x + \dfrac{n}{n})}}{{n!({x^2} + {n^2})({x^2} + \dfrac{{{n^2}}}{4}).....({x^2} + \dfrac{{{n^2}}}{{{n^2}}})}}} \right)^{\dfrac{x}{n}}}$
Now, from the numerator, take out $n$ from all bracketed terms and ${n^2}$ from each bracketed terms in denominator, we will get the following expression,
$f(x) = \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{{n^n}.{n^n}(\dfrac{x}{n} + 1)(\dfrac{x}{n} + \dfrac{1}{2}).....(\dfrac{x}{n} + \dfrac{1}{n})}}{{n!.{{({n^2})}^n}(\dfrac{{{x^2}}}{{{n^2}}} + 1)(\dfrac{{{x^2}}}{{{n^2}}} + \dfrac{1}{4}).....(\dfrac{{{x^2}}}{{{n^2}}} + \dfrac{1}{{{n^2}}})}}} \right)^{\dfrac{x}{n}}}$
Now, simplifying for $n$, we get,
$f(x) = \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{{n^{2n}}(\dfrac{x}{n} + 1)(\dfrac{x}{n} + \dfrac{1}{2}).....(\dfrac{x}{n} + \dfrac{1}{n})}}{{n!.{n^2}^n(\dfrac{{{x^2}}}{{{n^2}}} + 1)(\dfrac{{{x^2}}}{{{n^2}}} + \dfrac{1}{4}).....(\dfrac{{{x^2}}}{{{n^2}}} + \dfrac{1}{{{n^2}}})}}} \right)^{\dfrac{x}{n}}}$
In the above,${n^{2n}}$ term will be cancelled out. Now, in the denominator, we know that$n! = 1.2.3.4.5..............n$, so we multiply 1 with first term, 2 with second term, and so on. We will get following expression,
\[
f(x) = \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{{n^{2n}}(\dfrac{x}{n} + 1)(\dfrac{x}{n} + \dfrac{1}{2}).....(\dfrac{x}{n} + \dfrac{1}{n})}}{{n!.{n^2}^n(\dfrac{{{x^2}}}{{{n^2}}} + 1)(\dfrac{{{x^2}}}{{{n^2}}} + \dfrac{1}{4}).....(\dfrac{{{x^2}}}{{{n^2}}} + \dfrac{1}{{{n^2}}})}}} \right)^{\dfrac{x}{n}}} \\
f(x) = \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{(\dfrac{x}{n} + 1)(\dfrac{x}{n} + \dfrac{1}{2}).....(\dfrac{x}{n} + \dfrac{1}{n})}}{{(1.\dfrac{{{x^2}}}{{{n^2}}} + 1)(2.\dfrac{{{x^2}}}{{{n^2}}} + 2.\dfrac{1}{4}).....(n.\dfrac{{{x^2}}}{{{n^2}}} + n.\dfrac{1}{{{n^2}}})}}} \right)^{\dfrac{x}{n}}} \\
f(x) = \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{(\dfrac{x}{n} + 1)(\dfrac{x}{n} + \dfrac{1}{2}).....(\dfrac{x}{n} + \dfrac{1}{n})}}{{(\dfrac{{{x^2}}}{{{n^2}}} + 1)(\dfrac{{2{x^2}}}{{{n^2}}} + \dfrac{1}{2}).....(\dfrac{{n{x^2}}}{{{n^2}}} + \dfrac{1}{n})}}} \right)^{\dfrac{x}{n}}} \\
\]
Now, taking log on both sides, we get the following expression,
\[
\log (f(x)) = \log \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{(\dfrac{x}{n} + 1)(\dfrac{x}{n} + \dfrac{1}{2}).....(\dfrac{x}{n} + \dfrac{1}{n})}}{{(\dfrac{{{x^2}}}{{{n^2}}} + 1)(\dfrac{{2{x^2}}}{{{n^2}}} + \dfrac{1}{2}).....(\dfrac{{n{x^2}}}{{{n^2}}} + \dfrac{1}{n})}}} \right)^{\dfrac{x}{n}}} \\
\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } \dfrac{x}{n}[\left( {\log (\dfrac{x}{n} + 1) + \log (\dfrac{x}{n} + \dfrac{1}{2}) + ..... + \log (\dfrac{x}{n} + \dfrac{1}{n})} \right) \\
{\text{ }} - \left( {\log (\dfrac{{{x^2}}}{{{n^2}}} + 1) + \log (\dfrac{{2{x^2}}}{{{n^2}}} + \dfrac{1}{2}) + ..... + \log (\dfrac{{n{x^2}}}{{{n^2}}} + \dfrac{1}{n})} \right)] \\
\]
Now, we get two series in terms of \[\log (\dfrac{x}{n} + 1)\] and \[\log (\dfrac{{{x^2}}}{{{n^2}}} + 1)\]. We can write these series in summation form as below,
\[\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } \dfrac{x}{n}[\sum\limits_{r = 1}^n {\log (\dfrac{x}{n} + \dfrac{1}{r})} - \sum\limits_{r = 1}^n {\log (\dfrac{{r{x^2}}}{{{n^2}}} + \dfrac{1}{r})} ]\]
This can be re-written as by taking summation as common, because the summation range is same for both expressions,
\[\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } \dfrac{x}{n}[\sum\limits_{r = 1}^n {\left( {\log (\dfrac{x}{n} + \dfrac{1}{r}) - \log (\dfrac{{r{x^2}}}{{{n^2}}} + \dfrac{1}{r})} \right)} ]\],
Now taking out $\dfrac{1}{r}$ common from both terms, we get,
\[\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } \dfrac{x}{n}[\sum\limits_{r = 1}^n {\left( {\log \dfrac{1}{r}(\dfrac{{rx}}{n} + 1) - \log \dfrac{1}{r}(\dfrac{{{r^2}{x^2}}}{{{n^2}}} + 1)} \right)} ]\]
This can be written as
\[
\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } \dfrac{x}{n}[\sum\limits_{r = 1}^n {\left( {\log \dfrac{1}{r} + \log (\dfrac{{rx}}{n} + 1) - \log \dfrac{1}{r} - \log (\dfrac{{{r^2}{x^2}}}{{{n^2}}} + 1)} \right)} ] \\
\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } \dfrac{x}{n}[\sum\limits_{r = 1}^n {\left( {\log (\dfrac{{rx}}{n} + 1) - \log (\dfrac{{{r^2}{x^2}}}{{{n^2}}} + 1)} \right)} \\
\]
Assuming that $\dfrac{r}{n} = y,$then the above equation can be written as
$\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } x[\sum\limits_{r = 1}^n {\left( {\log (xy + 1) - \log ({y^2}{x^2} + 1)} \right)} $
Now, changing it into the integration form as
$\log (f(x)) = x\int\limits_0^1 {\log (1 + xy)dy - } x\int\limits_0^1 {\log (1 + {x^2}{y^2})dy} $
Now, let
$
xy = t \\
{{Then, }}xdy = dt \\
$
So that the above equation will become, and range will become 0 to$x$,
$\log (f(x)) = \int\limits_0^x {\log (1 + t)dt - } \int\limits_0^x {\log (1 + {t^2})dt} $
After simplification, we get
$\log (f(x)) = \int\limits_0^x {\log \dfrac{{(1 + t)}}{{(1 + {t^2})}}dt} $
Now differentiate, we get
$\dfrac{{{f'}(x)}}{{f(x)}} = \log \dfrac{{1 + x}}{{1 + {x^2}}}$
Now, from the options given, we will check these options one by one.
Now, put$x = 2$, we get
$\dfrac{{{f'}(2)}}{{f(2)}} = \log (\dfrac{{1 + 2}}{{1 + {2^2}}}) = \log (\dfrac{3}{5}) < 0$
It means, ${f'}(2) < 0$
Therefore, option (C) is correct.
Now, putting$x = 3$, we get
$\dfrac{{{f'}(3)}}{{f(3)}} = \log (\dfrac{{1 + 3}}{{1 + {3^2}}}) = \log \dfrac{4}{{10}} = \log (\dfrac{2}{5}) < 0$
But, this value is less than$\dfrac{{{f'}(2)}}{{f(2)}}$
Therefore, option (D) is incorrect.
Now, from the above trend, it can be said that for all$x > 0$
$\log \dfrac{{1 + x}}{{1 + {x^2}}}$> 0. Thus the function is an increasing function.
Now, we know that $\dfrac{1}{2} < 1$therefore, for this function, we can say that
$f(\dfrac{1}{2}) < f(1)$
Therefore, option (A) is incorrect.
Similarly, we know that $\dfrac{1}{3} < \dfrac{2}{3}$therefore, for this function, we can say that
$f(\dfrac{1}{3}) < f(\dfrac{2}{3})$.
Therefore, option (B) is correct.
This way, options (B) and (C) are the correct options.
Note: It is very common practice to solve these types of series and differential equation problems by cancelling the common factors and doing the substitution to reduce the complexity of the equation. These equations, though, look very difficult to get the answers from them, but if you see the above step by step procedure, these can be solved. You shall have to identify which type of substitution is required to simplify the equation.
Complete step by step answer:
Firstly, rewrite the expression given in the question in the following way,
$f(x) = \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{{n^n}(x + n)(x + \dfrac{n}{2}).....(x + \dfrac{n}{n})}}{{n!({x^2} + {n^2})({x^2} + \dfrac{{{n^2}}}{4}).....({x^2} + \dfrac{{{n^2}}}{{{n^2}}})}}} \right)^{\dfrac{x}{n}}}$
Now, from the numerator, take out $n$ from all bracketed terms and ${n^2}$ from each bracketed terms in denominator, we will get the following expression,
$f(x) = \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{{n^n}.{n^n}(\dfrac{x}{n} + 1)(\dfrac{x}{n} + \dfrac{1}{2}).....(\dfrac{x}{n} + \dfrac{1}{n})}}{{n!.{{({n^2})}^n}(\dfrac{{{x^2}}}{{{n^2}}} + 1)(\dfrac{{{x^2}}}{{{n^2}}} + \dfrac{1}{4}).....(\dfrac{{{x^2}}}{{{n^2}}} + \dfrac{1}{{{n^2}}})}}} \right)^{\dfrac{x}{n}}}$
Now, simplifying for $n$, we get,
$f(x) = \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{{n^{2n}}(\dfrac{x}{n} + 1)(\dfrac{x}{n} + \dfrac{1}{2}).....(\dfrac{x}{n} + \dfrac{1}{n})}}{{n!.{n^2}^n(\dfrac{{{x^2}}}{{{n^2}}} + 1)(\dfrac{{{x^2}}}{{{n^2}}} + \dfrac{1}{4}).....(\dfrac{{{x^2}}}{{{n^2}}} + \dfrac{1}{{{n^2}}})}}} \right)^{\dfrac{x}{n}}}$
In the above,${n^{2n}}$ term will be cancelled out. Now, in the denominator, we know that$n! = 1.2.3.4.5..............n$, so we multiply 1 with first term, 2 with second term, and so on. We will get following expression,
\[
f(x) = \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{{n^{2n}}(\dfrac{x}{n} + 1)(\dfrac{x}{n} + \dfrac{1}{2}).....(\dfrac{x}{n} + \dfrac{1}{n})}}{{n!.{n^2}^n(\dfrac{{{x^2}}}{{{n^2}}} + 1)(\dfrac{{{x^2}}}{{{n^2}}} + \dfrac{1}{4}).....(\dfrac{{{x^2}}}{{{n^2}}} + \dfrac{1}{{{n^2}}})}}} \right)^{\dfrac{x}{n}}} \\
f(x) = \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{(\dfrac{x}{n} + 1)(\dfrac{x}{n} + \dfrac{1}{2}).....(\dfrac{x}{n} + \dfrac{1}{n})}}{{(1.\dfrac{{{x^2}}}{{{n^2}}} + 1)(2.\dfrac{{{x^2}}}{{{n^2}}} + 2.\dfrac{1}{4}).....(n.\dfrac{{{x^2}}}{{{n^2}}} + n.\dfrac{1}{{{n^2}}})}}} \right)^{\dfrac{x}{n}}} \\
f(x) = \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{(\dfrac{x}{n} + 1)(\dfrac{x}{n} + \dfrac{1}{2}).....(\dfrac{x}{n} + \dfrac{1}{n})}}{{(\dfrac{{{x^2}}}{{{n^2}}} + 1)(\dfrac{{2{x^2}}}{{{n^2}}} + \dfrac{1}{2}).....(\dfrac{{n{x^2}}}{{{n^2}}} + \dfrac{1}{n})}}} \right)^{\dfrac{x}{n}}} \\
\]
Now, taking log on both sides, we get the following expression,
\[
\log (f(x)) = \log \mathop {\lim }\limits_{n \to \infty } {\left( {\dfrac{{(\dfrac{x}{n} + 1)(\dfrac{x}{n} + \dfrac{1}{2}).....(\dfrac{x}{n} + \dfrac{1}{n})}}{{(\dfrac{{{x^2}}}{{{n^2}}} + 1)(\dfrac{{2{x^2}}}{{{n^2}}} + \dfrac{1}{2}).....(\dfrac{{n{x^2}}}{{{n^2}}} + \dfrac{1}{n})}}} \right)^{\dfrac{x}{n}}} \\
\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } \dfrac{x}{n}[\left( {\log (\dfrac{x}{n} + 1) + \log (\dfrac{x}{n} + \dfrac{1}{2}) + ..... + \log (\dfrac{x}{n} + \dfrac{1}{n})} \right) \\
{\text{ }} - \left( {\log (\dfrac{{{x^2}}}{{{n^2}}} + 1) + \log (\dfrac{{2{x^2}}}{{{n^2}}} + \dfrac{1}{2}) + ..... + \log (\dfrac{{n{x^2}}}{{{n^2}}} + \dfrac{1}{n})} \right)] \\
\]
Now, we get two series in terms of \[\log (\dfrac{x}{n} + 1)\] and \[\log (\dfrac{{{x^2}}}{{{n^2}}} + 1)\]. We can write these series in summation form as below,
\[\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } \dfrac{x}{n}[\sum\limits_{r = 1}^n {\log (\dfrac{x}{n} + \dfrac{1}{r})} - \sum\limits_{r = 1}^n {\log (\dfrac{{r{x^2}}}{{{n^2}}} + \dfrac{1}{r})} ]\]
This can be re-written as by taking summation as common, because the summation range is same for both expressions,
\[\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } \dfrac{x}{n}[\sum\limits_{r = 1}^n {\left( {\log (\dfrac{x}{n} + \dfrac{1}{r}) - \log (\dfrac{{r{x^2}}}{{{n^2}}} + \dfrac{1}{r})} \right)} ]\],
Now taking out $\dfrac{1}{r}$ common from both terms, we get,
\[\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } \dfrac{x}{n}[\sum\limits_{r = 1}^n {\left( {\log \dfrac{1}{r}(\dfrac{{rx}}{n} + 1) - \log \dfrac{1}{r}(\dfrac{{{r^2}{x^2}}}{{{n^2}}} + 1)} \right)} ]\]
This can be written as
\[
\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } \dfrac{x}{n}[\sum\limits_{r = 1}^n {\left( {\log \dfrac{1}{r} + \log (\dfrac{{rx}}{n} + 1) - \log \dfrac{1}{r} - \log (\dfrac{{{r^2}{x^2}}}{{{n^2}}} + 1)} \right)} ] \\
\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } \dfrac{x}{n}[\sum\limits_{r = 1}^n {\left( {\log (\dfrac{{rx}}{n} + 1) - \log (\dfrac{{{r^2}{x^2}}}{{{n^2}}} + 1)} \right)} \\
\]
Assuming that $\dfrac{r}{n} = y,$then the above equation can be written as
$\log (f(x)) = \mathop {\lim }\limits_{n \to \infty } x[\sum\limits_{r = 1}^n {\left( {\log (xy + 1) - \log ({y^2}{x^2} + 1)} \right)} $
Now, changing it into the integration form as
$\log (f(x)) = x\int\limits_0^1 {\log (1 + xy)dy - } x\int\limits_0^1 {\log (1 + {x^2}{y^2})dy} $
Now, let
$
xy = t \\
{{Then, }}xdy = dt \\
$
So that the above equation will become, and range will become 0 to$x$,
$\log (f(x)) = \int\limits_0^x {\log (1 + t)dt - } \int\limits_0^x {\log (1 + {t^2})dt} $
After simplification, we get
$\log (f(x)) = \int\limits_0^x {\log \dfrac{{(1 + t)}}{{(1 + {t^2})}}dt} $
Now differentiate, we get
$\dfrac{{{f'}(x)}}{{f(x)}} = \log \dfrac{{1 + x}}{{1 + {x^2}}}$
Now, from the options given, we will check these options one by one.
Now, put$x = 2$, we get
$\dfrac{{{f'}(2)}}{{f(2)}} = \log (\dfrac{{1 + 2}}{{1 + {2^2}}}) = \log (\dfrac{3}{5}) < 0$
It means, ${f'}(2) < 0$
Therefore, option (C) is correct.
Now, putting$x = 3$, we get
$\dfrac{{{f'}(3)}}{{f(3)}} = \log (\dfrac{{1 + 3}}{{1 + {3^2}}}) = \log \dfrac{4}{{10}} = \log (\dfrac{2}{5}) < 0$
But, this value is less than$\dfrac{{{f'}(2)}}{{f(2)}}$
Therefore, option (D) is incorrect.
Now, from the above trend, it can be said that for all$x > 0$
$\log \dfrac{{1 + x}}{{1 + {x^2}}}$> 0. Thus the function is an increasing function.
Now, we know that $\dfrac{1}{2} < 1$therefore, for this function, we can say that
$f(\dfrac{1}{2}) < f(1)$
Therefore, option (A) is incorrect.
Similarly, we know that $\dfrac{1}{3} < \dfrac{2}{3}$therefore, for this function, we can say that
$f(\dfrac{1}{3}) < f(\dfrac{2}{3})$.
Therefore, option (B) is correct.
This way, options (B) and (C) are the correct options.
Note: It is very common practice to solve these types of series and differential equation problems by cancelling the common factors and doing the substitution to reduce the complexity of the equation. These equations, though, look very difficult to get the answers from them, but if you see the above step by step procedure, these can be solved. You shall have to identify which type of substitution is required to simplify the equation.
Recently Updated Pages
The real roots of the equation x23 + x13 2 0 are A class 11 maths JEE_Main
Find the reminder when 798 is divided by 5 class 11 maths JEE_Main
Let A and B be two sets containing 2 elements and 4 class 11 maths JEE_Main
A ray of light moving parallel to the xaxis gets reflected class 11 maths JEE_Main
A man on the top of a vertical observation tower o-class-11-maths-JEE_Main
If there are 25 railway stations on a railway line class 11 maths JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics