
Let, $f(x)=x-[x];x\in R$, where [.] represents the greatest integer function, then $f'\left( \dfrac{1}{2} \right)$ is equal to,
a) 1
b) 0
c) -1
d) 2
Answer
232.8k+ views
Hint: Use the formula given below to solve the problem,
$[x]=x$ If ‘x’ is an integer
$\dfrac{d}{dx}[x]=0$ If x is a fraction
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Complete step by step answer:
We will write given equation first,
$f(x)=x-[x]$
As [.] is a greatest integer function therefore we should know the formula to find derivative of greatest integer function before finding the derivative of f(x),
Formula:
$\dfrac{d}{dx}[x]=0$ If x is a fraction…………………………….. (1)
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Now,
$f(x)=x-[x]$
Differentiating f(x) with respect to x,
$\therefore f'(x)=\dfrac{d}{dx}\left( x-[x] \right)$
If we differentiate the two terms separately we will get,
\[\therefore f'(x)=\dfrac{d}{dx}x-\dfrac{d}{dx}[x]\]
As we know the formula to find the derivative of ‘x’ which is \[\dfrac{d}{dx}x=1\],
\[\therefore f'(x)=1-\dfrac{d}{dx}[x]\]
Here, we have to find the derivative of $f(x)$ at $x=\dfrac{1}{2}$
As $x=\dfrac{1}{2}$ is a fraction therefore we can use the formula number 1 so that we can directly write, \[f'(\dfrac{1}{2})\]
\[\therefore f'(\dfrac{1}{2})=1-0\]
\[\therefore f'(\dfrac{1}{2})=1\]
Therefore, we will get the final answer as \[f'(\dfrac{1}{2})\] is 1
Hence, the correct answer is option (a).
Note:
While calculating derivatives of greatest integer function always check whether the value of x is fraction or an integer.
If we don’t know the formula of derivative of greatest integer function then we should at least know the definition which is given below to solve this type of problems,
If f(x) = [x] then,
$[x]=0~$ If ‘x’ is a fraction
$[x]=x~$ If ‘x’ is an integer
$[x]=x$ If ‘x’ is an integer
$\dfrac{d}{dx}[x]=0$ If x is a fraction
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Complete step by step answer:
We will write given equation first,
$f(x)=x-[x]$
As [.] is a greatest integer function therefore we should know the formula to find derivative of greatest integer function before finding the derivative of f(x),
Formula:
$\dfrac{d}{dx}[x]=0$ If x is a fraction…………………………….. (1)
$\dfrac{d}{dx}[x]=\infty $ If x is an integer
Now,
$f(x)=x-[x]$
Differentiating f(x) with respect to x,
$\therefore f'(x)=\dfrac{d}{dx}\left( x-[x] \right)$
If we differentiate the two terms separately we will get,
\[\therefore f'(x)=\dfrac{d}{dx}x-\dfrac{d}{dx}[x]\]
As we know the formula to find the derivative of ‘x’ which is \[\dfrac{d}{dx}x=1\],
\[\therefore f'(x)=1-\dfrac{d}{dx}[x]\]
Here, we have to find the derivative of $f(x)$ at $x=\dfrac{1}{2}$
As $x=\dfrac{1}{2}$ is a fraction therefore we can use the formula number 1 so that we can directly write, \[f'(\dfrac{1}{2})\]
\[\therefore f'(\dfrac{1}{2})=1-0\]
\[\therefore f'(\dfrac{1}{2})=1\]
Therefore, we will get the final answer as \[f'(\dfrac{1}{2})\] is 1
Hence, the correct answer is option (a).
Note:
While calculating derivatives of greatest integer function always check whether the value of x is fraction or an integer.
If we don’t know the formula of derivative of greatest integer function then we should at least know the definition which is given below to solve this type of problems,
If f(x) = [x] then,
$[x]=0~$ If ‘x’ is a fraction
$[x]=x~$ If ‘x’ is an integer
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

