
Let $\hat u = {u_1}\hat i + {u_2}\hat j + {u_3}\hat k$ be a unit vector in ${R^3}$ and $\hat w = \dfrac{1}{{\sqrt 6 }}\left( {\hat i + \hat j + 2\hat k} \right)$ given that there exists a vector $\vec v$ in ${R^3}$ such that $\left| {\hat u \times \vec v} \right| = 1$ and $\hat w\left( {\hat u \times \vec v} \right) = 1$ . Which of the following statements is (are) true?
A) There is exactly one choice for such $\vec v$
B) There are infinitely many choices for such $\vec v$
C) If $\hat u$ lies in the $xy - $plane then $\left| {{u_1}} \right| = \left| {{u_2}} \right|$
D) If $\hat u$ lies in the $xz - $plane then $2\left| {{u_1}} \right| = \left| {{u_3}} \right|$
Answer
232.8k+ views
Hint: We will consider each of the given data and use it to verify each statement. We need to observe that there could be multiple correct answers. So even if we verified one statement, we need to continue the checking for the remaining statements as well.
Complete step by step solution:
It is given that $\hat u = {u_1}\hat i + {u_2}\hat j + {u_3}\hat k$ is a unit vector in ${R^3}$ .
The vector $\hat w = \dfrac{1}{{\sqrt 6 }}\left( {\hat i + \hat j + 2\hat k} \right)$ .
We have already given that there exists a vector $\vec v$ in ${R^3}$ such that $\left| {\hat u \times \vec v} \right| = 1$ and $\hat w\left( {\hat u \times \vec v} \right) = 1$ .
That means we know that there exists at least one vector $\vec v$ , so we only need to check whether it is unique or not.
That will verify the first two statements.
For two vectors $\vec a$ and $\vec b$ the dot product is given by $\vec a \cdot \vec b = ab\cos \theta $ .
It is given that $\hat w\left( {\hat u \times \vec v} \right) = 1$ .
Using the definition of dot product, we write:
$\left| {\hat w} \right|\left| {\left( {\hat u \times \vec v} \right)} \right|\cos \theta = 1$
This implies that $\cos \theta = 1$ .
Therefore, we conclude that the vector $\hat w$ is perpendicular to the cross product vector $\left( {\hat u \times \hat v} \right)$ which will imply that the vector $\hat w$ is perpendicular to both the vectors $\hat u$ as well as $\hat v$ with $\left| {\hat u \times \hat v} \right| = 1$ .
From this we can conclude that there can be infinitely many vectors $\hat v$ satisfying the given conditions.
Therefore, the option B is definitely correct.
Now observe that only one of the statements from C and D can be true.
We will begin the verification from statement C.
Let us assume for a moment that the vector $\hat u$ lies in $xy$- plane.
Therefore, the component along $\hat k$ is zero.
The vector $\hat u$ is of the form:
$\hat u = {\hat u_1}i + {\hat u_2}j$
Therefore, the product $\hat w \cdot \hat u = 0$ .
Taking the product by definition we get,
${u_1} + {u_2} = 0$
This implies that $\left| {{u_1}} \right| = \left| {{u_2}} \right|$ .
That means the statement C is also true and statement D is false.
Therefore, the options B and C both are correct.
Note: The problem is based on the concepts more than the numbers. We don’t even have to make a single calculation just we need to have our concepts clear. Also, we need to keep in mind that the question is such that there could be multiple correct answers so verify each answer before jumping to any conclusion.
Complete step by step solution:
It is given that $\hat u = {u_1}\hat i + {u_2}\hat j + {u_3}\hat k$ is a unit vector in ${R^3}$ .
The vector $\hat w = \dfrac{1}{{\sqrt 6 }}\left( {\hat i + \hat j + 2\hat k} \right)$ .
We have already given that there exists a vector $\vec v$ in ${R^3}$ such that $\left| {\hat u \times \vec v} \right| = 1$ and $\hat w\left( {\hat u \times \vec v} \right) = 1$ .
That means we know that there exists at least one vector $\vec v$ , so we only need to check whether it is unique or not.
That will verify the first two statements.
For two vectors $\vec a$ and $\vec b$ the dot product is given by $\vec a \cdot \vec b = ab\cos \theta $ .
It is given that $\hat w\left( {\hat u \times \vec v} \right) = 1$ .
Using the definition of dot product, we write:
$\left| {\hat w} \right|\left| {\left( {\hat u \times \vec v} \right)} \right|\cos \theta = 1$
This implies that $\cos \theta = 1$ .
Therefore, we conclude that the vector $\hat w$ is perpendicular to the cross product vector $\left( {\hat u \times \hat v} \right)$ which will imply that the vector $\hat w$ is perpendicular to both the vectors $\hat u$ as well as $\hat v$ with $\left| {\hat u \times \hat v} \right| = 1$ .
From this we can conclude that there can be infinitely many vectors $\hat v$ satisfying the given conditions.
Therefore, the option B is definitely correct.
Now observe that only one of the statements from C and D can be true.
We will begin the verification from statement C.
Let us assume for a moment that the vector $\hat u$ lies in $xy$- plane.
Therefore, the component along $\hat k$ is zero.
The vector $\hat u$ is of the form:
$\hat u = {\hat u_1}i + {\hat u_2}j$
Therefore, the product $\hat w \cdot \hat u = 0$ .
Taking the product by definition we get,
${u_1} + {u_2} = 0$
This implies that $\left| {{u_1}} \right| = \left| {{u_2}} \right|$ .
That means the statement C is also true and statement D is false.
Therefore, the options B and C both are correct.
Note: The problem is based on the concepts more than the numbers. We don’t even have to make a single calculation just we need to have our concepts clear. Also, we need to keep in mind that the question is such that there could be multiple correct answers so verify each answer before jumping to any conclusion.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

