
\[Mn{{O}_{2}}\] is oxidized anodically. The number of hours required to oxidize 26.08 g of \[Mn{{O}_{2}}\] by a current of 0.5 A is:
[Atomic mass of Mn = 55]
Answer
133.8k+ views
Hint:In electrochemistry we can’t always measure the amount of flow of charges. Instead the concept of current is used. Current is the amount of electrical charge that flows per unit time. It is measured in Amperes (A).
Complete step by step solution:
> For this we use Faraday's Constant, F. Faraday's Constant is given by the symbol F and is defined as the charge in coulombs (C) of 1 mole of electrons. Faraday's constant is approximately 96485 C mol-1. You can calculate F by multiplying the charge on one electron (1.602 x 10-19) by Avogadro's number (6.022 x 1023),
We have been given in the problem that the:
Mass of \[Mn{{O}_{2}}\] is 26.08g.
Atomic mass of Mn is 55 amu.
Current = 0.5 A
\[M{{n}^{4+}}+4{{e}^{-}}\to Mn\]
We can see from the above that 4 mol of electrons give 1 mol of Magnesium, Mn.
> Now we will put the numbers in. 1 mol of electrons is 1 faraday.
4 x 96500 coulombs give 55 g of copper.
Number of coulombs = \[=\dfrac{26.08\times 2\times 96485}{55}=94502.86\]C
Now we know how many coulombs we need, and the current was already given in the problem. Finally, we can calculate the time required to oxidize \[Mn{{O}_{2}}\].
Number of coulombs = current in amps x time in seconds
\[\begin{align}
& 94502.86=0.5\times \,t \\
& t=18901.72\,\sec \\
\end{align}\]
To convert into hours, we will divide by 60.
\[\dfrac{18901.72}{60}=315\,hours\]
So, the total time taken will be 315 hours.
Note: The same question can be given with time and asking to calculate the amount of \[Mn{{O}_{2}}\] produced after oxidation. In that case the procedure should be:
\[\text{Current}\,\text{and time}\to \text{Charge(C)}\to \text{faradays}\to \text{moles}\to \text{grams}\]
Complete step by step solution:
> For this we use Faraday's Constant, F. Faraday's Constant is given by the symbol F and is defined as the charge in coulombs (C) of 1 mole of electrons. Faraday's constant is approximately 96485 C mol-1. You can calculate F by multiplying the charge on one electron (1.602 x 10-19) by Avogadro's number (6.022 x 1023),
We have been given in the problem that the:
Mass of \[Mn{{O}_{2}}\] is 26.08g.
Atomic mass of Mn is 55 amu.
Current = 0.5 A
\[M{{n}^{4+}}+4{{e}^{-}}\to Mn\]
We can see from the above that 4 mol of electrons give 1 mol of Magnesium, Mn.
> Now we will put the numbers in. 1 mol of electrons is 1 faraday.
4 x 96500 coulombs give 55 g of copper.
Number of coulombs = \[=\dfrac{26.08\times 2\times 96485}{55}=94502.86\]C
Now we know how many coulombs we need, and the current was already given in the problem. Finally, we can calculate the time required to oxidize \[Mn{{O}_{2}}\].
Number of coulombs = current in amps x time in seconds
\[\begin{align}
& 94502.86=0.5\times \,t \\
& t=18901.72\,\sec \\
\end{align}\]
To convert into hours, we will divide by 60.
\[\dfrac{18901.72}{60}=315\,hours\]
So, the total time taken will be 315 hours.
Note: The same question can be given with time and asking to calculate the amount of \[Mn{{O}_{2}}\] produced after oxidation. In that case the procedure should be:
\[\text{Current}\,\text{and time}\to \text{Charge(C)}\to \text{faradays}\to \text{moles}\to \text{grams}\]
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Classification of Drugs

Chlorobenzene can be prepared by reacting aniline with class 12 chemistry JEE_Main

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

Electrochemistry Class 12 Notes: CBSE Chemistry Chapter 2
