Answer
Verified
112.8k+ views
Hint:In electrochemistry we can’t always measure the amount of flow of charges. Instead the concept of current is used. Current is the amount of electrical charge that flows per unit time. It is measured in Amperes (A).
Complete step by step solution:
> For this we use Faraday's Constant, F. Faraday's Constant is given by the symbol F and is defined as the charge in coulombs (C) of 1 mole of electrons. Faraday's constant is approximately 96485 C mol-1. You can calculate F by multiplying the charge on one electron (1.602 x 10-19) by Avogadro's number (6.022 x 1023),
We have been given in the problem that the:
Mass of \[Mn{{O}_{2}}\] is 26.08g.
Atomic mass of Mn is 55 amu.
Current = 0.5 A
\[M{{n}^{4+}}+4{{e}^{-}}\to Mn\]
We can see from the above that 4 mol of electrons give 1 mol of Magnesium, Mn.
> Now we will put the numbers in. 1 mol of electrons is 1 faraday.
4 x 96500 coulombs give 55 g of copper.
Number of coulombs = \[=\dfrac{26.08\times 2\times 96485}{55}=94502.86\]C
Now we know how many coulombs we need, and the current was already given in the problem. Finally, we can calculate the time required to oxidize \[Mn{{O}_{2}}\].
Number of coulombs = current in amps x time in seconds
\[\begin{align}
& 94502.86=0.5\times \,t \\
& t=18901.72\,\sec \\
\end{align}\]
To convert into hours, we will divide by 60.
\[\dfrac{18901.72}{60}=315\,hours\]
So, the total time taken will be 315 hours.
Note: The same question can be given with time and asking to calculate the amount of \[Mn{{O}_{2}}\] produced after oxidation. In that case the procedure should be:
\[\text{Current}\,\text{and time}\to \text{Charge(C)}\to \text{faradays}\to \text{moles}\to \text{grams}\]
Complete step by step solution:
> For this we use Faraday's Constant, F. Faraday's Constant is given by the symbol F and is defined as the charge in coulombs (C) of 1 mole of electrons. Faraday's constant is approximately 96485 C mol-1. You can calculate F by multiplying the charge on one electron (1.602 x 10-19) by Avogadro's number (6.022 x 1023),
We have been given in the problem that the:
Mass of \[Mn{{O}_{2}}\] is 26.08g.
Atomic mass of Mn is 55 amu.
Current = 0.5 A
\[M{{n}^{4+}}+4{{e}^{-}}\to Mn\]
We can see from the above that 4 mol of electrons give 1 mol of Magnesium, Mn.
> Now we will put the numbers in. 1 mol of electrons is 1 faraday.
4 x 96500 coulombs give 55 g of copper.
Number of coulombs = \[=\dfrac{26.08\times 2\times 96485}{55}=94502.86\]C
Now we know how many coulombs we need, and the current was already given in the problem. Finally, we can calculate the time required to oxidize \[Mn{{O}_{2}}\].
Number of coulombs = current in amps x time in seconds
\[\begin{align}
& 94502.86=0.5\times \,t \\
& t=18901.72\,\sec \\
\end{align}\]
To convert into hours, we will divide by 60.
\[\dfrac{18901.72}{60}=315\,hours\]
So, the total time taken will be 315 hours.
Note: The same question can be given with time and asking to calculate the amount of \[Mn{{O}_{2}}\] produced after oxidation. In that case the procedure should be:
\[\text{Current}\,\text{and time}\to \text{Charge(C)}\to \text{faradays}\to \text{moles}\to \text{grams}\]
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes
NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether
NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions
NCERT Solutions for Class 12 Chemistry Chapter 9 Amines
NCERT Solutions for Class 12 Chemistry Chapter 8 Aldehydes Ketones and Carboxylic Acids