Answer
Verified
110.7k+ views
Hint: When a force is applied on a point lying on a line passing through another point then the force produces a torque on another point which lies on the line passing through the point of application of force. This torque is also known as the moment.
Formula used
$\overrightarrow \tau = \overrightarrow r \times \overrightarrow F $
$\overrightarrow \tau $ is the torque(moment of force)s, $\overrightarrow r $is distance vector, $\overrightarrow F $ is the force vector.
Complete Step-by-step solution
$\overrightarrow r $is the distance vector which is the difference of position vector of the points which represent the point of application of force and the point of reference.
$ \Rightarrow \overrightarrow r = (2\overrightarrow i + 3\overrightarrow j + \overrightarrow k ) - (\overrightarrow i + 2\overrightarrow j - \overrightarrow k )$
$ \Rightarrow \overrightarrow r = \overrightarrow i + \overrightarrow j + 2\overrightarrow k $
Given,
$ \Rightarrow \overrightarrow F = \overrightarrow i + 2\overrightarrow j + \overrightarrow k $
$\overrightarrow F $ is the force vector.
We know that,
$ \Rightarrow \overrightarrow \tau = \overrightarrow r \times \overrightarrow F $
$\overrightarrow \tau $ is the torque vector.
\[ \Rightarrow \overrightarrow \tau = (\overrightarrow i + \overrightarrow j + 2\overrightarrow k ) \times (\overrightarrow i + 2\overrightarrow j + \overrightarrow k )\]
$ \Rightarrow \overrightarrow \tau = - 3\overrightarrow i + \overrightarrow j + \overrightarrow k $
Hence the correct answer is (C) $ - 3\overrightarrow i + \overrightarrow j + \overrightarrow k $.
Additional information
For a force to produce torque(moment of force) then force must not be parallel to the distance vector and should not be parallel to the axis about which the body is going to rotate.
The ease with which a body will rotate after applying torque(moment of force) is called the moment of inertia of that body along a given axis.
In the above calculation, we wrote $\overrightarrow \tau = \overrightarrow r \times \overrightarrow F $ which means that the torque(moment of force) vector is the vector obtained through the cross product/vector product of $\overrightarrow r $ and $\overrightarrow F $.
$\overrightarrow \tau $ is the counterpart of $\overrightarrow F $ i.e. the significance of $\overrightarrow F $ in translation motion is similar to that of $\overrightarrow \tau $in rotational motion.
Note:
Torque(moment of force) is the amount of force that can cause an object to rotate about an axis. Just as force is what causes an object to accelerate in linear kinematics, torque causes an object to gain an angular acceleration. Torque is a vector quantity.
Formula used
$\overrightarrow \tau = \overrightarrow r \times \overrightarrow F $
$\overrightarrow \tau $ is the torque(moment of force)s, $\overrightarrow r $is distance vector, $\overrightarrow F $ is the force vector.
Complete Step-by-step solution
$\overrightarrow r $is the distance vector which is the difference of position vector of the points which represent the point of application of force and the point of reference.
$ \Rightarrow \overrightarrow r = (2\overrightarrow i + 3\overrightarrow j + \overrightarrow k ) - (\overrightarrow i + 2\overrightarrow j - \overrightarrow k )$
$ \Rightarrow \overrightarrow r = \overrightarrow i + \overrightarrow j + 2\overrightarrow k $
Given,
$ \Rightarrow \overrightarrow F = \overrightarrow i + 2\overrightarrow j + \overrightarrow k $
$\overrightarrow F $ is the force vector.
We know that,
$ \Rightarrow \overrightarrow \tau = \overrightarrow r \times \overrightarrow F $
$\overrightarrow \tau $ is the torque vector.
\[ \Rightarrow \overrightarrow \tau = (\overrightarrow i + \overrightarrow j + 2\overrightarrow k ) \times (\overrightarrow i + 2\overrightarrow j + \overrightarrow k )\]
$ \Rightarrow \overrightarrow \tau = - 3\overrightarrow i + \overrightarrow j + \overrightarrow k $
Hence the correct answer is (C) $ - 3\overrightarrow i + \overrightarrow j + \overrightarrow k $.
Additional information
For a force to produce torque(moment of force) then force must not be parallel to the distance vector and should not be parallel to the axis about which the body is going to rotate.
The ease with which a body will rotate after applying torque(moment of force) is called the moment of inertia of that body along a given axis.
In the above calculation, we wrote $\overrightarrow \tau = \overrightarrow r \times \overrightarrow F $ which means that the torque(moment of force) vector is the vector obtained through the cross product/vector product of $\overrightarrow r $ and $\overrightarrow F $.
$\overrightarrow \tau $ is the counterpart of $\overrightarrow F $ i.e. the significance of $\overrightarrow F $ in translation motion is similar to that of $\overrightarrow \tau $in rotational motion.
Note:
Torque(moment of force) is the amount of force that can cause an object to rotate about an axis. Just as force is what causes an object to accelerate in linear kinematics, torque causes an object to gain an angular acceleration. Torque is a vector quantity.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main